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Abstract—Low-Earth orbit (LEO) satellites utilizing beam
hopping (BH) technology offer extensive coverage, low latency,
high bandwidth, and significant flexibility. However, the uneven
geographical distribution and temporal variability of ground
traffic demands, combined with the high mobility of LEO satel-
lites, present significant challenges for efficient beam resource
utilization. Traditional BH methods based on GEO satellites
fail to address issues such as satellite interference, overlapping
coverage, and mobility. This paper explores a Digital Twin (DT)-
based collaborative resource allocation network for multiple
LEO satellites with overlapping coverage areas. A two-tier
optimization problem, focusing on load balancing and cell service
fairness, is proposed to maximize throughput and minimize inter-
cell service delay. The DT layer optimizes the allocation of
overlapping coverage cells by designing BH patterns for each
satellite, while the LEO layer optimizes power allocation for each
selected service cell. At the DT layer, an Actor-Critic network is
deployed on each agent, with a global critic network in the cloud
center. The A3C algorithm is employed to optimize the DT layer.
Concurrently, the LEO layer optimization is performed using
a Multi-Agent Reinforcement Learning algorithm, where each
beam functions as an independent agent. The simulation results
show that this method reduces satellite load disparity by about
72.5% and decreases the average delay to 12ms. Additionally, our
approach outperforms other benchmarks in terms of throughput,
ensuring a better alignment between offered and requested data.

Index Terms—Multi-satellite beam hopping, digital twin,
power allocation, load balancing, LEO satellite communications.

I. INTRODUCTION

LOW Earth Orbit (LEO) satellite communication systems,
which play a crucial role in 6G, have advanced quickly

due to their wide coverage, low latency, high transmission
capacity, and flexible resource scheduling [1]–[4]. To pro-
vide broadband transmission and seamless coverage, LEO
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constellations must ensure multiple coverage, where some
areas are served by multiple satellites. However, the uneven
geographic distribution of ground users and the high mobility
of LEO satellites lead to temporal and spatial variability
in traffic demands within a satellite’s coverage area. Beam
Hopping (BH) technology, based on time slicing, achieves
the traditional multi-beam coverage with fewer beams. This
makes LEO satellites equipped with BH antennas highly
flexible, which is crucial for addressing the varying demands
across different regions [5]. Nonetheless, if beams are powered
uniformly, the transmission capacity will still fall short of
meeting the uneven traffic demands across different beams [6]–
[8]. Additionally, onboard power in LEO satellites is extremely
limited [9], making the intelligent and real-time joint BH and
power allocation (PA) a critical research focus in LEO satellite
communication systems.

Nevertheless, there are still some critical issues which are
closely related to practical implementations and have not
been well addressed in effectively scheduling beams and
power resources in LEO satellite constellations [6], [8]. First,
the constantly changing topology of LEO satellite networks
leads to fluctuations in inter-beam interference and satellite-to-
ground link conditions, demanding adaptive rather than static
resource management [10], [11]. Second, managing resource
scheduling is key to reducing beam interference, both within
and between satellites. Third, joint optimization of beam
and power resources expands the system’s state-action space,
exacerbating the ”curse of dimensionality.” Additionally, this
joint optimization creates a discrete-continuous hybrid action
space, where beam allocation is discrete, and PA is con-
tinuous [12]. Approximating continuous actions using finite
discrete sets diminishes the natural structure of continuous
actions, while relaxing discrete actions into continuous sets
significantly complicates the action space. Finally, scheduling
beams and power resources must not be viewed as a simple
single-objective optimization, but should concurrently consider
multiple performance metrics, such as network throughput,
latency, and fairness.

In reviewing the literature, it is evident that most studies
concentrated on flexible radio resource allocation with a fixed
beam direction, applicable to either a single satellite [6], [13]–
[15] or multiple satellites [16]–[19]. Some studies (e.g., [20],
[21]) primarily utilize BH technology to address the uneven
geographical distribution of users. However, these studies
overlook the importance of adaptive beam resource allocation,
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opting instead for a static allocation strategy, such as equal
distribution across beams. Although certain works [22]–[24]
are dedicated to joint optimization of PA and beam direction,
they are limited to single-satellite scenarios.

In summary, existing research cannot be directly applied
to multi-beam, multi-LEO satellite networks to address the
aforementioned key issues. Furthermore, addressing all of
these issues simultaneously presents new challenges for the
dynamic resource management in LEO satellite networks due
to the following aspects.

a. Inter-beam interference is unavoidable when multi-beam
LEO satellites transmit downlink data through BH. This
interference includes both intra-satellite and inter-satellite
interference, leading to a strong interdependence between
resource allocation decisions across satellites. Therefore,
to fully exploit the spectrum reuse benefits in multi-
beam LEO satellite communications, fostering coopera-
tion among satellites is crucial to mitigate interference
and enhance system capacity. However, the limited com-
putational capacity and energy resources of satellites sig-
nificantly increase the difficulty of satellite cooperation.

b. The resource allocation decisions (including BH and PA)
should be jointly optimized to maximize overall network
performance. Since BH and PA are closely intertwined,
their joint optimization is typically NP-hard, making it
difficult to achieve an optimal solution within polynomial
time.

c. With the constant movement of LEO satellites, the con-
nections between satellites and ground terminals fre-
quently change. Consequently, resource allocation deci-
sions must be adaptable to this dynamic environment, fur-
ther increasing the complexity of resource management.

To address these complex challenges, we note that Digital
Twin (DT) technology provides an opportunity to represent
the real world in a virtualized manner and has emerged
as a promising tool for guiding resource deployment and
scheduling in the real world. As an effective method for
bridging the gap between physical entities and the digital
realm, DT has garnered significant attention from both industry
and academia [25]. In industries such as manufacturing, power
grids, and transportation management, DT has proven its abil-
ity to enhance operational efficiency and reduce resource waste
through precise system modeling and predictive capabilities
[26]. In multi-LEO satellite communication systems, intro-
ducing DT can provide a global perspective for LEO satellite
systems. By virtually replicating and monitoring the status and
resource dynamics of physical satellite networks, DT can fully
capture the real-time status changes of satellites, ground users,
and the environment [27]. This global perspective can support
the overall optimization of BH and PA, not only helping to
coordinate resource allocation for multiple satellites, but also
effectively dealing with interference management and load
balancing issues between satellites.

Motivated by these considerations, we design a DT-
empowered multi-beam, multi-satellite cooperative service
network and formulate a resource management problem for
the downlink scenario that integrates both BH and PA. Our

objective is to enhance the fairness of cell service while
simultaneously improving throughput. To address this esource
management problem, we decompose the original problem into
two sub-problems: demand prediction-based BH at the DT
layer and beam PA at the LEO satellite layer. We propose two
advanced reinforcement learning algorithms to solve these sub-
problems. The key contributions of this paper are summarized
as follows:

• We propose a DT-empowered resource allocation frame-
work for LEO satellite networks, addressing the joint
BH and PA problem in a dynamic multi-beam, multi-
satellite downlink scenario. The objective is to maximize
throughput while ensuring fairness across cells. Given
the mixed-integer, non-convex nature of the optimization
problem, we decompose it into two simpler sub-problems:
a DT layer multi-LEO satellite cooperative BH problem
focused on load balancing, and a multi-beam power
resource allocation problem at the LEO layer.

• For optimization at the DT layer, the cloud predicts
future time slot requirements based on historical de-
mand data, considering the overlapping coverage of LEO
satellite systems to design a BH scheme that balances
communication demands among satellites. We employ
the A3C algorithm, deploying an actor-critic network on
each satellite and a global critic network in the cloud to
improve training efficiency and stability.

• To optimize resource allocation at the LEO layer, each
satellite beam is modeled as an agent, and an on-demand
beam PA problem is established. The Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) algorithm is
utilized to facilitate cooperation and competition among
these agents, further enhancing cell service fairness and
system throughput.

• Extensive simulation results demonstrate that the pro-
posed joint BH and PA algorithm significantly outper-
forms baseline algorithms in terms of throughput, load
balancing, and cell fairness.

The rest of this paper is organized as follows. Section II
reviews the related literature. Section III describes the system
model and presents the joint BH and power resource allocation
optimization problem for multiple LEO satellites. Section IV
decomposes the optimization problem into two sub-problems
and provides a detailed explanation of the solution methods
for these sub-problems. Section V presents the simulation re-
sults, demonstrating the superior performance of the proposed
method. Section VI presents a summary of this paper and
discusses future research prospects.

II. RELATED WORK

Recently, to better align beam resources with non-uniform
traffic demands, flexible resource allocation strategies for satel-
lite communication systems have garnered significant attention
[6], [17], [18], [24], [28]–[46].

For instance, [6] presented a PA and multi-beam scheduling
method to optimize limited power resources against unevenly
distributed user traffic, considering the trade-off between total
capacity and user fairness. [17] focused on subchannel and
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PA optimization in multi-beam GEO satellite communication
systems, aiming to satisfy traffic demands with minimal trans-
mission power and bandwidth. In [18], the authors formulated
a joint optimization problem of PA and data transmission
scheduling for satellite-assisted remote IoT networks, with the
objective of maximizing total data rate, and they designed a
model-free reinforcement learning framework to accommodate
the highly dynamic nature of LEO satellite communications.

Similarly, Takahashi et al. [29] introduced a novel mathe-
matical model that balances beam pointing and PA, signifi-
cantly improving satellite communication resource utilization
and highlighting the benefits of joint optimization over single-
dimensional optimization. Wang et al. [30] proposed a joint
optimization algorithm for PA, beam scheduling, and terminal
time-slot allocation in coexisting BH-NOMA systems, devis-
ing a constraint scheme to accurately gauge the global optimal
solution. Du et al. [31] proposed a dynamic reinforcement
learning-based strategy to integrate beam hopping and power
allocation (BHPA), enhancing power utilization and satellite
throughput while demonstrating the feasibility of PA.

Further, Shi et al. [34] addressed the multi-objective opti-
mization problem of system throughput and terminal delay,
employing a heuristic method to jointly allocate power and
bandwidth. The authors in [38] developed a two-stage ap-
proach for beam PA, utilizing genetic algorithm and simulated
annealing (GA-SA). Lin et al. [39] presented a two-stage BH
design strategy aimed at minimizing energy consumption in
BH satellite communications while addressing users’ hetero-
geneous demands.

However, the aforementioned studies primarily focus on
single GEO satellites. Joint BH and resource allocation for
multiple LEO satellites presents distinct challenges. The rapid
motion of LEO satellites, coupled with constantly changing
channel conditions and varying traffic demands, differentiates
the LEO scenario from GEO systems. Additionally, LEO
terminals are typically small and prone to interference from
neighboring satellites, especially in regions covered by multi-
ple satellites. This makes it challenging to directly apply GEO-
based BH resource allocation schemes to LEO systems.

In response, recent research has begun investigating re-
source allocation strategies for multi-beam LEO satellite sys-
tems [40]–[46]. Liu et al. [40] modeled the dynamic coverage
area of LEO satellites as rectangular blocks and applied an
iterative algorithm to optimize system capacity. A greedy
algorithm based on beam position traffic demand was utilized
to enhance throughput [41]. Shuang et al. [42] introduced
a joint beam scheduling and power optimization algorithm
considering the geographic distribution of aggregation nodes,
while examining the impact of co-channel interference in LEO
systems, focusing primarily on single LEO satellites. Li [43]
presented an optimization solution for the high-dimensional
problem in dual-satellite scenarios. Deng [44] investigated
system capacity optimization in three-layer heterogeneous
satellite networks, focusing on load balancing and interference
management. Lin et al. [45], [46] explored the BH scheme for
NGSO multi-satellite systems and the coexistence of NGSO
and GSO satellites. These studies, however, assume even
power distribution across satellite beams, leaving opportunities

for further optimization.
The most closely related work is [47], which explored the

joint optimization of beam direction alongside spectrum, time,
and power resources in dmicyna multi-beam LEO satellite
networks. Nonetheless, the overlapping beam coverage of
multiple LEO satellites introduces the risk of interference
between adjacent satellites. Although beam direction control
has been addressed, the issue of interference management in
multi-satellite cooperation has not been fully resolved. This
paper aims to tackle this problem comprehensively.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section first describes the system model, which consists
of the digital twin network, traffic model, and communication
model. Next, the joint optimization problem of BH and PA
is formulated. For convenience, the detailed notations and
definitions used in this paper are summarized in Table I.

TABLE I: Notations and Definitions

Notations Definitions
N Number of satellites
C Number of cells covered per satellite
K Number of beams per satellite
B Total satellite bandwidth
T BH period
J Delay fairness
Q Load balancing
α The weight between Load balancing and delay fairness
β The weight between throughput and delay fairness
Vn The set of cells under the coverage of satellite n
Tttl Time to live of a data packet in queue
ρtn,c Arrival traffic in time slot t for cell c of satellite n
ρ̂tn,c Predicted of arrival traffic at slot t for cell c of satellite n
λt
n The arrival rate of cell c covered by satellite n in slot t

dtn,c The total traffic stored in queue c at slot t in satellite n

ϕn,t
c,l Data packets stored in queue c for l time slots

xt
n,c The illumination status of cell c by satellite n in time slot t

Lt
n The traffic load of satellite n at slot t

τ tn,c Average queue delay per data packet in cell c at time slot t
Trx The noise temperature of the receiver
Ptot The total power of each satellite
ptn,k Power of beam k belonging to satellite n

Pmax The maximum power allocated to each beam
hkc,l Channel coefficients from beam l to user kc in cell c.
Gt(θkc,l) Transmit antenna gain from the l-th beam to the kc-th user
Gkc

r Receive antenna gain of the user kc
rtn,c Channel capacity of cell c served by satellite n in slot t
ωi,j The distance between cells i and j
ϖ The minimum interference distance between cells
Tht

n,c The throughput of cell c during time slot t

A. System Model

1) Digital Twin Network: This paper considers the forward
link of a multi-beam LEO satellite communication system
in a DT-empowered satellite network, consisting of ground
users, LEO satellites, and a cloud center. As shown in Fig.
1, LEO satellites serve users in ground coverage cells through
BH. Adjacent LEO satellites have overlapping coverage areas,
meaning that multiple satellites may cover the same cell at the
same time.

Adjacent LEO satellites have overlapping coverage areas,
meaning multiple satellites may cover a cell. The cloud center
maintains a DT model of the entire network to monitor and
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Fig. 1: Forward link of the DT-empowered multi-beam LEO satellite
communication system.

optimize resource allocation. It periodically collects global
network state information, such as cell requests, LEO satellite
resource usage, and buffer queue backlogs. Using this DT, the
cloud center monitors dynamic changes in the LEO satellite
network and optimizes BH plans. The DT network determines
the service cells for each time slot, encompassing the alloca-
tion of overlapping cells.

Consider that there are N satellites serving the ground area
containing a total of M cells. The sets of satellites and cells
are denoted by N = {n|n = 1, 2, · · · , N}, and V = {v|v =
1, 2, · · · , V }, respectively. Each satellite can produce K beams
and provide transmission service to C cells through time-
division multiplexing (TDM) manner. The set of K beams of
satellite n is expressed as Kn = {kn|kn = 1, · · · , k, · · · ,K}.
In particular, the set of cells covered by n-th satellite is
represented by Vn, |Vn| = C. Owing to the multiple coverage
characteristics of the LEO satellite communication system
[46], one cell may be covered by multiple satellites, i.e.
Vi∩Vj ̸= ∅, ∀i, j ∈ N . Without loss of generality, we consider
the first T time slots, denoted as T = {t|t = 1, · · · , t, · · · , T}.
The duration of each time slot is Tslot.

2) Traffic Model: Assuming that each satellite holds C
queues for storing the arriving traffic from the coverage
cells, and each queue capable of storing only the traffic that
arrived within the last Tttl time slots due to the limited queue
storage, where Tttl is defined as Time To Live (TTL) [41].
Λt

n = {ρtn,1, · · · , ρtn,c, · · · , ρtn,C} denotes the arrival traffic of
satellite n in time slot t, where ρtn,c represents the arrival traffic
of cell c covered by satellite n in time slot t. Therefore, the
total traffic stored in satellite n during time slot t is represented
as Dt

n = {dtn,1, · · · , dtn,c, · · · , dtn,C}, where dtn,c is the traffic
demand of cell c in time slot t. We can reasonably expand
dtn,c to {ϕn,t

c,1 , ϕ
n,t
c,2 , · · · , ϕ

n,t
c,Tttl
}, where

∑Tttl

l=1 ϕ
n,t
c,l = dtn,c and

ϕn,t
c,l represents the number of data packets that have been in

queue c for l time slots. For users in overlapping coverage
cells, all covering satellites will receive their requests.

To satisfy the traffic demand of cells, each satellite should
reasonably decide the beam irradiation positions. The BH

pattern of satellite n at time slot t can be expressed as

Xt
n = {xt

n,1, . . . , x
t
n,c, . . . , x

t
n,C} (1)

where xt
n,c ∈ {0, 1} denotes whether the coverage cell c of

satellite n is illuminated by the beam of satellite n in time
slot t.

3) Communication Model: In order to fully utilize spec-
trum resources and enhance spectrum efficiency, all beams
are considered to occupy the entire satellite bandwidth B.
This implies the use of full frequency reuse in the multi-
satellite BH system, where co-frequency interference between
beams becomes significant. For example, a user in the cell c
served by the k-th beam (referred to as the kc-th user) will
receive NK signals from N satellites. The channel vector
linking the user kc to NK beams is expressed as hkc =
[hkc,1, hkc,2, . . . , hkc,NK ]. Assuming the user compensates for
the Doppler frequency offset due to satellite motion and that
clear sky conditions prevail, neglecting rain attenuation. Let
Gt (θkc,l) denote the transmit antenna gain of the l-th beam
to user kc, which is determined by the off-axis angle θkc,l

between user kc and the main lobe direction of beam l. The
receiving antenna gain for user kc is denoted by Gkc

r . So, the
channel coefficient between the kc-th user and the l-th beam
can be denoted by [39],

hkc,l =

√
Gt (θkc,l)G

kc
r

4π
dkc,l

λ′

(2)

where dkc,l is the distance between user kc and beam l, and
λ

′
represents the wavelength.

Therefore, the signal-to-noise ratio of user kc can be ex-
pressed as,

SINRt
n,kc

=
ptn,k |hkc,k|

2

σ2 + IIntra + IInter
(3)

where σ2 = kBTrxB represents the noise power. kB is the
Boltzmann constant and Trx is the receiver noise temperature.
IIntra =

∑
l∈Kn\{k} p

t
n,l |hkc,l|

2 denotes intra-satellite inter-
ference, IInter =

∑
n′∈N\{n}

∑
l∈Kn′ p

t
n′,l |hkc,l|

2 represents
inter-satellite interference. ptn,l is the power allocated by satel-
lite n to its l-th beam. Similarly, ptn′,l is the power allocated
by satellite n′ to its l-th beam.

According to (3), let rtn,c denote the channel capacity of cell
c served by satellite n in time slot t which can be calculated
as follows:

rtn,c = xt
n,cB log2

(
1 + SINRt

n,kc

)
(4)

where xt
n,c denotes if the cell c is illuminated, and B denotes

the bandwidth allocated to beam k serving cell c. Since
the system employs full-frequency multiplexing, each beam
utilizes the entire available bandwidth B.

Let Tht
n,c denote throughput of cell c at time slot t, which

can be calculated as follows:

Tht
n,c = min

{
rtn,c, d

t
n,c

}
(5)
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B. Optimization Problem Formulation

It should be noted that multiple beams from different
satellites may serve the same cell at the same time slot,
resulting in significant inter-satellite interference. Therefore, it
is necessary to carefully plan the BH pattern of each satellite
and the corresponding PA of the beams. Given the time-
varying characteristics of traffic demands, the joint BH and
PA aims to maximize the total throughput of the satellite
while minimizing delay fairness among all cells, given the
limitations of total bandwidth and power resources.

The total throughput of all satellites can be expressed as
follows:

Thtot =

T∑
t=1

N∑
n=1

C∑
c=1

Tht
n,c (6)

Likewise, let τ tn,c denote the average queueing delay of each
data packet of the cell c during time slot t, which can be
computed by

τ tn,c =

∑Tttl

l=1 l · ϕ
n,t
c,l∑Tttl

l=1 ϕ
n,t
c,l

(7)

Therefore, the delay fairness among all cells J is expressed
as follows:

J =

N∑
n=1

T∑
t=1

(
max
c∈Vn

{
τ tn,c

}
− min

c∈Vn

{
τ tn,c

})
(8)

To maximize throughput while reducing latency fairness, we
establish a optimization problem. This problem combines BH
and PA, and can be modeled as follows:

P0 : max
Xt

n,P
t
n

β
Thtot

Thnorm
− (1− β)

J

Jnorm
, β ∈ [0, 1]

s.t. C1 : xt
n,c ∈ {0, 1},∀n ∈ N ,∀c ∈ Vn

C2 :

C∑
c=1

xt
n,c = K,∀n ∈ N

C3 :
∑
n

xt
n,c ≤ 1,∀n ∈ N

C4 : xt
n,c = 0,∀c /∈ Vn,∀n ∈ N

C5 : xt
n,ix

t
n′,j = 1, ωi,j ≥ ϖ,∀i ∈ Vn, j ∈ Vn′

C6 : ptn,k ≤ Pmax,∀n ∈ N ,∀k ∈ Kn

C7 :

K∑
k=1

ptn,k ≤ Ptot,∀n ∈ N

(9)

In the aforementioned optimization problem, Xt
n and P t

n

are the variables to be optimized, representing the BH pattern
and the corresponding beam PA of satellite n at time slot
t, respectively. The parameter β is a preset weight used to
balance the trade-off between throughput and delay fairness,
while Thmax and Jmax are normalization constants. C1

constrains optimization variables xt
n,c to be binary variables.

C2 states that each satellite can activate exactly K beams
at once, meaning each satellite can select K cells within its
coverage area for communication services in each time slot. C3

emphasizes that each cell is served by at most one beam from
one satellite in each time slot. C4 means that each satellite
can only select cells within its coverage area for service. C5

enforces that the distance between cells i and j serviced in
time slot t exceeds the minimum interference distance ϖ, with
ωi,j = dist(i, j) denoting the distance between cells i and j.
C6 limits the power ptn,k allocated to each beam not exceeding
the maximum beam power Pmax. C7 ensures that the total
beam power of satellite n does not exceed the total power of
satellite Ptot.

It can be observed that problem (9) is both non-convex and
nonlinear, with the non-convexity arising from the SINR in
equation (3). Additionally, problem (9) involves continuous
variables ptn,k and discrete variables xt

n,c. As a result, this
optimization problem is NP-hard, making it impractical to
find an optimal solution in polynomial time. In the following
section, we will introduce a new method that provides a sub-
optimal solution with low computational complexity.

IV. PROBLEM DECOMPOSITION AND PROPOSED
BHPA-LBDP ALGORITHM

In this section, P0 is divided into two sub-problems: the BH
design problem for multiple satellites based on load balancing
and interference avoidance, and the PA problem for each
satellite.

A. Multi-Satellite BH Design Based on Load Balancing and
Interference Avoidance

In LEO satellite BH systems, the distribution of ground
services is uneven, resulting in significant differences in ser-
vice demands across satellites. Certain satellites cover high-
demand, densely populated regions, whereas others cover
sparsely populated areas with relatively low demand. If all
high-demand cells were assigned to a single satellite, it would
become overloaded, leaving the resources of other satellites
underutilized. As a result, balancing the load among satel-
lites is crucial for improving the system’s overall resource
efficiency.

Since hotspot areas can be covered by multiple neighboring
satellites simultaneously, serving the same hotspot cell with
multiple satellites at the same time can result in severe
inter-satellite interference. Therefore, assigning these hotspot
areas to different satellites can reduce the load on individual
satellites and avoid interference among neighboring satellites.

1) Optimization Problem Formulation: In summary, the
multi-satellite traffic-driven BH problem can be described as
minimizing the weighted sum of traffic load between satellites
and cell service fairness, which is formalized as follow:

P1 :min
Xt

n

{
α

Q

Qmax
+ (1− α)

J

Jmax

}
s.t. C1 : Q =

T∑
t=1

max
n∈N

{
Lt
n

}
−

T∑
t=1

min
n∈N

{
Lt
n

}
C2 : Lt

n =
∑
c∈Vn

dtn,cx
t
n,c,∀n ∈ N

C3 : C1 − C5 from P0

(10)

where Xt
n is the only optimization variable of the optimization

problem, representing the BH pattern of satellite n at time
slot t. In C1, Q represents the load balance among satellites,
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defined as the difference between the maximum and minimum
satellite loads. Lt

n represents the traffic load of satellite n,
which is calculated in C2.

It should be noted that the optimization problem (10) is
an integer, non-linear, and non-convex problem, which is still
NP-hard. Additionally, due to the rapid movement of LEO
satellites, the coverage cells of the satellites are dynamically
changing, that is, the arrival traffic of the coverage cells
received by the satellites is frequently changing. Thus, tradi-
tional integer optimization methods, such as branch and bound,
cannot be applied here. In this paper, an DRL algorithm is
proposed to find the relatively optimal BH decision through
continuously interacting with the environment.

2) Multi-Agent MDP Formulation: In fact, the BH opti-
mization problem (10) is essentially a sequential decision-
making problem, and the traffic Dt can be expressed as,

Dt = Dt−1 −Xt−1rt−1 +Λt (11)

However, the request arrival traffic state Λt is unknown dur-
ing BH decision-making. Fortunately, the states from previous
time slots are easily accessible. Given the temporal correlation
between state changes, we are motivated to predict the current
state by leveraging past state sequences.

Arrival Traffic Estimation: The LSTM model is trained
using historical request arrival traffic state sequences of cells,
which are collected by DT. The error between the actual state
and the predicted state is used to update the weight parameters
W and U . At time step t − 1, the request arrival traffic state
ρt−1
n,c serves as the input to the LSTM network, with the output

providing an estimate of the current request arrival traffic state.
The memory block parameters are updated as follows:

f t = σ
[
W fρ

t−1
n,c +Ufht−1 + bf

]
it = σ

[
W iρ

t−1
n,c +U iht−1 + bi

]
Ĉt = tanh

[
W cρ

t−1
n,c +U cht−1 + bc

]
Ct = f t ⊙Ct−1 + it ⊙ C̃t

ot = σ
[
W oρ

t−1
n,c +Uoht−1 + bo

]
ht = ot ⊙ tanh (Ct)

ρ̂t
n,c = W hht + bh

(12)

Here, W f represents the weight between the input and the
forget gate, while Uf corresponds to the weight between the
previous hidden state ht−1 and the forget gate. The bias is
bf , and σ(·) denotes logical sigmoid function. W i and W c

are the weights linking the input state ρt−1
n,c to the input

gates, whereas U i and U c represent the weights between
the previous hidden state ht− 1 and the input gate. The
hyperbolic tangent function is tanh(·), and ⊙ stands for the
Hadamard product. W o refers to the weight between the
current input ρt−1

n,c and the output gate, and Uf represents
the weight between the hidden state ht−1 and the output gate.
Finally, W h and bh are the output weight matrix and bias
term corresponding to the predicted state ρ̂t

n,c, respectively.
Thus, we can model the state evolution using a Markov De-

cision Process (MDP). Specifically, the four key components
of the MDP, i.e., state, observation, action, and reward, are
defined as follows.

• State: At time slot t, the system can observe the entire
traffic demand as the global state, which is represented
as follows:

st = [vec(D̂t); vec(Ht)]

D̂
t
= Dt−1 −Xt−1rt−1 + Λ̂

t

Dt−1 =


dt−1
1,1 dt−1

1,2 · · · dt−1
1,C

dt−1
2,1 dt−1

2,2 · · · dt−1
2,C

· · · · · · · · · · · ·
dt−1
N,1 dt−1

N,2 · · · dt−1
N,C



Λ̂
t
=


ρ̂t1,1 ρ̂t1,2 · · · ρ̂t1,C
ρ̂t2,1 ρ̂t2,2 · · · ρ̂t2,C
· · · · · · · · · · · ·
ρ̂tN,1 ρ̂tN,2 · · · ρ̂tN,C



Ht =


ht
1,1 ht

1,2 · · · ht
1,C

ht
2,1 ht

2,2 · · · ht
2,C

· · · · · · · · · · · ·
ht
N,1 ht

N,2 · · · ht
N,C



(13)

where ρ̂tn,c represents the predicted request arrival traffic
in cell c covered by satellite n at time slot t, which can
be obtained by (12). ht

n,k is channel gain from satellite
n to its c-th cell at time slot t, which can be obtained
by (2). It should be noted that the state represents global
information, which the agents (i.e., the satellites) cannot
fully access since they only have local observations.
Therefore, the global state can only be utilized by the
centralized trainer in DT network.

• Observation: Denote ot
n as the local observation ac-

cessed by the n-th agent at time slot t. Similar to the
state, the local observation,

ot
n = [Dt

n;H
t
n] (14)

where Dt
n =

[
dtn,1, d

t
n,2, . . . , d

t
n,C

]
represents the sta-

tus of traffic queues on the n-th satellite. Ht
n =[

ht
n,1, h

t
n,2, . . . , h

t
n,C

]
is the channel information of the

n-th satellite.
• Action: As an agent, the satellite must decide which cells

to illuminate. Thus, the action of agent can be defined as:

atn
∣∣
n∈N

=
(
xt
n,1, . . . , x

t
n,c, . . . , x

t
n,C

)
,

xt
n,c ∈ {0, 1}, and

C∑
c=1

xt
n,c = 1

(15)

• Reward: To minimize the objective defined in equation
(10), we design the reward at time t as follows:

Rt = Rt
(
st, at

)
= −[αmax {Lt

n} −min {Lt
n}

Qmax
+

(1− α)
max

{
τ tn,i

}
−min

{
τ tn,j

}
Jmax

+ Γ],∀i, j ∈ Vn

(16)
Note that we introduce a penalty term Γ in the reward to
avoid inter-satellite interference. This penalty is propor-
tional to the number of cells illuminated simultaneously.
Thus, the reward will be reduced if multiple satellites
illuminate the same cell at a time slot.
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The request arrival traffic estimation module deployed in DT
can predict the state ρ̂t

n for time slot t based on the observed
state ρt−1

n for time slot t− 1. The predicted state, along with
the local queue state and channel state of time slot t is then
input into the local cooperative BH strategy module. This
module outputs the local BH action a that the agent should
take at decision time t, thereby determining which cells will
be served by satellite n.

3) Multi-Agent BH Decision Based on A3C (MA3C-BH):
Since the Actor-Critic method performs better in discrete
action spaces, this paper employs a multi-agent A3C algorithm
based on Actor-Critic method.

Fig. 2: The cooperative multi-agent actor-critic framework of the
MA3C-BH algorithm.

Note that the BH decision is made in the DT, which has
sufficient computing power. As shown in Fig.2, each satellite
deploys an actor network to select actions and a critic network
to estimate the value of actions. Simultaneously, the DT
deploys a critic network to integrate the feedback of all agents
and provide global value evaluation.

This study establishes I + 1 threads based on the A3C
algorithm. Each thread designs N actor networks and N + 1
critic networks as illustrated in Fig. 2, where N represents
the total number of satellites. The network parameters in
each thread are denoted as {θ1, θ2, · · · , θN , ϕ1, ϕ2, · · · , ϕN}.
The network {θ1, θ2, · · · , θN , ϕ1, ϕ2, · · · , ϕN} outputs a de-
cision network {at1, at2, · · · , atN} based on the observation
vector {ot

1,o
t
2, · · · ,ot

N} obtained from the environment. The
Critic network {ϕ1, ϕ2, · · · , ϕN} calculates the Temporal
Difference-error (TD-error) δ based on the reward rt generated
at that moment and passes it to the other actor networks.
Each actor network uses the received TD-error δ to update
its parameters via gradient descent.

In the A3C architecture, the global network does not par-
ticipate in actual exploration. Instead, it copies and shares the
parameters explored by the preceding threads, achieving asyn-
chronous learning and accelerating convergence. In a separate

Algorithm 1 Multi-agent A3C BH strategy (MA3C-BH)

1: Initialize global parameters θg for actor network, ϕg for
critic network

2: Initialize thread-specific parameters θi for actor network,
ϕi for critic network

3: Initialize shared critic network parameters ϕs

4: Set the number of threads I and the number of actor-critic
networks per thread N

5: for each thread i = 1, . . . , I do
6: Initialize environment
7: Initialize local copy of parameters θi ← θg , ϕi ← ϕg

8: while not converged do
9: Receive state st from environment

10: for each actor-critic network j = 1, . . . , N do
11: Calculate action atj = πθi

j
(st) using actor

network
12: Execute action atj and observe reward rtj and

next state st+1
j

13: Calculate TD-error δij = rtj + γVϕi
j
(st+1

j ) −
Vϕi

j
(st)

14: Update actor network parameters θij using pol-
icy gradient by: ∆θij = ∇θi

j
log πθi

j

(
otj , a

t
j

)
δij

15: Update local Critic network parameters ϕi
j us-

ing TD-error: ϕi
j ← ϕi

j + βδij∇ϕi
j
Vϕi

j
(st)

16: end for
17: Update shared critic network parameters ϕs using

average TD error by (19)
18: end while
19: end for
20: Asynchronously update global parameters:

θg ←
1

I

I∑
i=1

θi

ϕg ←
1

I

I∑
i=1

ϕi

thread, the critic network predicts the value function at two
moments through the states X(t) and X(t+1), calculates the
TD-error, and updates the network parameters by minimizing
the least squares temporal difference (LSTD),

V ∗ = argmin
V

(
δiθc

)2
(17)

where V ∗ represents the optimization value function. For the
actor network, after receiving the TD-error calculated by the
critic network, the TD-error is used to calculate its gradient:

∇θi
j
J
(
θij
)
= E

[
∇θi

j
log πθi

j

(
otj , a

t
j

)
δij

]
(18)

where πθi
j
(s, a) represents the probability of the Actor net-

work taking action atj under the state observation vector otj .
We then use gradient descent to update the actor network:

θij ← θij + α∇θi
j
log πθi

j

(
otj , a

t
j

)
δij (19)
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Additionally, each agent will also use the shared critic
network to update its value function:

ϕs ← ϕs + λ
1

V

V∑
j=1

δij∇ϕs
Vϕs

(st) (20)

In summary, the proposed algorithm MA3C-BH is showing
in Algorithm 1.

B. PA Based on Delay Fairness

After solving problem P1, the BH pattern is determined,
and each satellite has to determine the PA. This scheme should
promote the transmission of a larger proportion of packets in
the satellite’s buffer queue, preventing packet loss due to queu-
ing delays exceeding the maximum tolerable threshold. This
strategy is meticulously designed to enhance the satellite’s data
throughput while ensuring minimal delay fairness among the
served cells, thus balancing efficiency and equity in resource
allocation.

1) Problem Formulation : We define ptn,k to represent the
power allocated to the beam k of satellite n during slot t.
From problem P0 we can formulate the PA problem as:

P2 : max
P t

n

{
β

Thtot

Thmax
− (1− β)

J

Jmax

}
, β ∈ [0, 1]

s.t. C1 : C6, C7 from P0 (21)

where P t
n = {ptn,1, . . . , ptn,k, . . . , ptn,K} represents the power

allocated to each beam of satellite n.
2) The Sequential Decision-Making Problem Reformula-

tion: The problem P2 can be regarded as a sequence decision-
making problem, which can be further reformulated as an
MDP with infinite states and continuous action spaces. De-
fine the formulated MDP as (st−1,at−1, rt−1, st), where s
represents the state set of the environment, a indicates the
action taken by the agent, and r refers to the reward function.

• State: The states of systems consists of two parts: the
matrix of the number of packets D

t

n and the downlink
loss matrix H

t

n. Thus, the state vector st can be defined
as:

st = (D
t

n,H
t

n),

D
t

n =
[
dtn,c|xt

n,c = 1,∀c ∈ Vn

]
=

[
dtn,1, . . . , d

t
n,k, . . . , d

t
n,K

]
H

t

n =
[
ht
n,c|xt

n,c = 1,∀c ∈ Vn

]
=

[
ht
n,1, . . . , h

t
n,k, . . . , h

t
n,K

]
(22)

where D
t

n represents the traffic of K cells selected to be
served by satellite n in time slot t, with dtn,k and ht

n,k

representing the traffic and channel gain of the selected
k-th cell, respectively.

• Action: In the LEO layer, each beam is considered as an
agent that decides PA in each time slot. Thus, the actions
can be defined as:

at = at
n =

[
ptn,1, . . . , p

t
n,k, . . . , p

t
n,K

]
(23)

where ptn,k denotes the power that the satellite n allocates
to the beam k at time slot t.

• Reward: To promote cooperation among the agents, they
are awarded a global reward, which is defined as follows:

Rt = Rt
(
stn, a

t
n

)
= β

∑C
c=1 Th

t
n,c

Thmax
−

(1− β)

(
max

{
τ tn,i

}
−min

{
τ tn,j

})
Jmax

,∀i, j ∈ Vn

(24)

3) PA Based on MADDPG (MAPA): We employ the MAD-
DPG algorithm, a multi-agent deep reinforcement learning
method that merges the Actor-Critic (AC) and Deep Deter-
ministic Policy Gradient (DDPG) algorithms, to solve the
reformulated MDP problem. Since all onboard transmitters
are deployed on the same satellite, each beam can observe the
same state information. The decision for each beam is made by
its own policy network, independent of other beams’ actions.
This process is known as decentralized decision-making. As
shown in Fig.3, an actor network is deployed by each beam
to choose actions, and a global critic network is used by the
satellite to assess the action values.

Fig. 3: The cooperative multi-agent actor-critic framework of
the MAPA algorithm.

However, due to the cooperative and competitive relation-
ships among the beams, an individual beam cannot reach
an optimal solution without considering the actions of other
beams. Therefore, after the beams make decentralized deci-
sions, a policy evaluation network assesses the overall strategy
of all beams on the satellite. The evaluation results are fed back
to each beam’s policy network to update the strategy param-
eters. Through continuous learning and iteration, the multiple
beams can ultimately achieve a unique optimal solution. This
process is known as centralized training.

In this work, each beam is treated as an agent and is
equipped with its own actor network. The task of the actor
network is to select actions, represented as:

at
i = πθt

i
(sti) +N0 (25)

where N0 represents exploration noise added to promote
diverse action exploration. Concurrently, all agents execute
their chosen actions ai, and the environment responds with
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a new state s′i and an immediate reward ri. The local critic
network then calculates the Q value, yi, as

yti = rti + γQϕ′({st+1
i }, {at+1

i })|at+1
j =πθ

j′
(st+1

j ) (26)

Updates the global critic network parameters by minimizing
the Q value error:

L(ϕ) =
1

|R|
∑
j

(yj −Qϕ ({sj} , {aj}))2 (27)

At the same time, each agent’s local actor network param-
eters are updated using the policy gradient:

∇θiJ ≈ 1

|R|
∑
j

∇ai
Qϕ({sj}, {aj})|ai=πθi (si)

∇θiπθi(si)

(28)
The specific procedure of the algorithm, called MAPA, is

summarized in Algorithm 2.

Algorithm 2 MADDPG for PA (MAPA)

1: Initialize environment with satellites, beams, and cells,
global power constraint P

2: Initialize actor network parameters θi for each agent i
3: Initialize global critic network parameters ϕ
4: Initialize target network parameters θi′ ← θi, ϕ′ ← ϕ
5: Set learning rates αθ, αϕ

6: Initialize replay buffer R
7: Set the number of beams K, the number of time slots T
8: Set soft update parameter τ
9: for each episode do

10: Initialize state s0i for each agent i
11: for each time slot t = 0, . . . , T do
12: for each agent i = 1, . . . ,K do
13: Select action ati according to (25)
14: end for
15: Execute actions {ati} and observe new states
{st+1

i } and rewards {rti}
16: Store transition ({sti}, {ati}, {rti}, {s

t+1
i }) in re-

play buffer R
17: Sample a random minibatch of transitions

({stj}, {atj}, {rtj}, {s
t+1
j }) from R

18: Global critic network update:
19: for each agent i do
20: Set (26)
21: end for
22: Update critic by minimizing the loss: (27)
23: actor network update:
24: for each agent i do
25: Update actor using sampled policy gradient:
26: (28)
27: end for
28: Soft update target networks:

θi′ ← τθi + (1− τ)θi′ ;ϕ
′ ← τϕ+ (1− τ)ϕ

29: end for
30: end for

C. Complexity Analysis

First, we analyze the complexity of using LSTM to predict
the demand of a community. Assume that the LSTM network
has L layers, each layer has H hidden units, and the time step
is T . Then the complexity of LSTM is O(Llstm ·H2

lstm · T ).
Secondly, we assess the complexity involved in solving

sub-problem P1. In the A3C algorithm adopted, each agent
(satellite) has an Actor-Critic network, and there is a Critic
network is centrally deployed. Assuming that the Actor net-
work has Lθ layers, each layer has Hθ neurons, its complexity
is O(Lθ ·H2

θ ). For the Critic network, assuming that there are
Lϕ layers, and each layer has Hϕ neurons, the complexity
of the local and global Critic network is: O(Lϕ ·H2

ϕ). Thus,
the total complexity at each time step can be expressed as
O(N · (Lθ ·H2

θ + 2Lϕ ·H2
ϕ)) = O(N · (Lθ ·H2

θ +Lϕ ·H2
ϕ)).

In addition, the complexity of asynchronous global parameter
update is O(I · (Lθ · H2

θ + Lϕ · H2
ϕ)). As a result, the total

complexity for solving sub-problem P1 is O(I · T ·N · (Lθ ·
H2

θ + Lϕ ·H2
ϕ)).

Thirdly, the complexity of the MAPA algorithm for address-
ing sub-problem P2 (i.e., the single-satellite PA problem) is
analyzed. Similarly, assuming that the Actor network for each
beam has Lθ′ layers, each layer has Hθ′ hidden neurons, and
the input dimension is DA, the Actor network’s complexity
is expressed as O(B · Lθ′ · H2

θ′). For the Critic network,
assuming that the Critic network has Lϕ′ layers, and each layer
has Hϕ′ neurons, the Critic network’s complexity is given by
O(B · Lϕ′ · H2

ϕ′). Thus, the total complexity of sub-problem
P2 is O(T ·K · B · (Lθ′ ·H2

θ′ + Lϕ′ ·H2
ϕ′).

To summarize, the computational complexity of entire al-
gorithm BHPA-LBDP is O(Llstm ·H2

lstm · T ) +O(I · T ·N ·
(Lθ ·H2

θ + Lϕ ·H2
ϕ) +O(T ·K · B · (Lθ′ ·H2

θ′ + Lϕ′ ·H2
ϕ′).

V. PERFORMANCE EVALUATION

This section first describes the simulation environment and
the parameters used for the simulations. Then, we present
the simulation results to demonstrate the performance in DT-
empowered multi-beam satellite network with the proposed
algorithm BHPA-LBDP.

A. Simulation Parameter

In this paper, we simulate a Ka-band forward BH and PA
system. In both MA3C-BH and MAPA network architectures,
the actor network comprises two hidden layers with 128
neurons each, while the critic network consists of two hidden
layers with 256 neurons each. Adam is used as the solver for
both networks. The constellation parameters and other main
simulation parameters are summarized in Table II [45].

We present the optimization effects of the proposed BH and
PA Algorithm based on Load Balancing and Delay Fairness
(named BHPA-LBDF, including MA3C-BH and MAPA) and
compare it with four different BHPA schemes as follows:

1) Random Beam Hopping Fixed Power Allocation (RBH-
FP): In RBH-FP, each satellite randomly selects four cells to
serve in each time slot, and distributes total power equally
among the selected cells.
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2) Random Beam Hopping Demand Based Power Alloca-
tion (RBH-DP): In RBH-DP, each satellite randomly selects
four cells to serve in each time slot and allocates power
according to the demand ratio of the selected cells.

3) Beam Hopping Fixed Power Allocation with Load Bal-
ancing and Delay Fairness (FPA): In FPA, based on load
balancing across all satellites and service fairness within each
satellite’s coverage, four cells are selected for each satellite
in each time slot, with total power divided equally among the
selected cells.

4) Beam Hopping and Discretized Power Allocation Based
on DT (DPA): In DPA, each satellite acts as an agent,
completing BH and PA (discretized processing) to maximize
system throughput and delay fairness.

TABLE II: System Parameters

Parameters Values
SYSTEM PARAMETERS
Satellite altitude 780 km
Ka-band frequency 20 GHz
Number of satellites, N 12
The number of cells served by per satellite, C 19
Total number of cells covered by all satellites, V 168
The coverage radius of a cell, R 39 km
Number of beams per satellite, K 4
The available bandwidth for the system, B 100 MHz
Satellite’s total power, P 39 dBW
The maximum power for each beam, Pmax 30 dBW
TAperture radius of the antenna 0.15 m
The satellite beams’ 3 dB beamwidth 3◦
Maximum gain of the transmit antenna 35.9 dBi
Receiving antenna gain at the terminal, Gr 0 dBi
Temperature of noise, Trx 300 K
Time slot duration, Tslot 2 ms
The period of BHTP, TH 64 × Tslot
Weighting factors, α, β α = β = 0 : 0.1 : 1
MA3C-BH TRAINING PARAMETERS
Training Episode 6000
Actor network learning rate, αθ 0.00001
Critic network learning rate, αϕ 0.0001
Discount factor, γ 0.99
Number of Threads, I 16
Optimizer Adam
MA-PA TRAINING PARAMETERS
Training Episode 6000
Soft Update Parameter, τ 0.001
Replay Buffer size, R 1000000
Minibatch size, |B| 64
Discount factor, γ 0.99
Actor network learning rate αθ 0.00001
Critic network learning rate αϕ 0.0001
Exploration Noise N0 0.2
Optimizer Adam

B. Convergence Analysis

To illustrate the convergence of the BHPA-LBDF method,
we present the episode reward and episode loss from one
of the training scenarios with α = β = 0.5, as depicted in
Fig. 4. As shown in Fig. 4(a), the reward increases with the
training episodes and converges after 1200 episodes. Fig. 4(b)
shows that the episode loss remains stable and converges to
10−4 after approximately 4000 episodes. This demonstrates
that the convergence of BHPA-LBDF is guaranteed under the
parameter settings listed in Table II. Next, we will compare
the performance of BHPA-LBDF with the four aforementioned

schemes. The performance metrics include throughput, load
balance, queueing delay and delay fairness.

(a) (b)

Fig. 4: An illustration of (a) episode reward and (b) loss during training
(α = β = 0.5)

C. Performance Analysis

(a) (b)

Fig. 5: The performance of (a) traffic load-traffic load gap and (b) delay
fairness under different optimization weight α.

1) Performance Under Different Optimization Weights:
The optimization weight α reflects the trade-off between load
balance Q and delay fairness J . As shown in Fig. 5, the
performance of traffic load, traffic load gap and delay fairness
changes with α. Both traffic load and delay fairness increase
as α rises from 0 to 1 since a larger α focuses more on load
balancing. This reduces the load gap, thereby improving delay
fairness. A higher delay fairness indicates greater inequity
in resource allocation. To strike a balance between load and
delay fairness, we use the trained model with α = 0.5 for
comparison with other approaches.

(a) (b)

Fig. 6: The performance of (a) throughput and (b) delay fairness
under different optimization weight β.

Similarly, the optimization weight β reflects the trade-off
between throughput and delay fairness. As shown in Fig. 6, the
performance of both throughput and delay fairness improves
as β increases from 0 to 1. To achieve a better balance between
throughput and delay fairness, we use the trained model with
β = 0.5 for comparison with other approaches.
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2) Performance of Load Balancing: Fig. 7 shows the traffic
load of each satellite after BH using different algorithms. The
red box represents the BH strategy using MA3C algorithm,
which considers load balancing and delay fairness, achieving
the smallest load difference of 82.13 Mbps between satellites.
Notably, due to uneven traffic distribution, MA3C algorithm
improves load balancing by 75.95%, 43.45%, 60.95%, and
73.11% compared to the Greedy BH (G-BH), Random BH
(R-BH), Periodic BH (P-BH), and Queue-Length Priority BH
(Q-BH) methods, respectively.

Fig. 7: Results of load balancing after beam hopping for different methods
(the proposed MA3C-BH with α= 0.5).

3) Performance of Throughput: Fig. 8 shows the through-
put versus total traffic demand using different methods, and
Fig. 9 shows throughput of 12 satellites among different
algorithms. The total traffic demand represents the cumulative
demand of all cells. The proposed method, BHPA-LBDP,
consistently outperforms other algorithms. This improvement
occurs because agents accumulate experience during training,
eventually learning to fully utilize the beam’s degrees of
freedom in time, space, and power. Specifically, compared
to RBH-FP, RBH-DP, FPA, and DPA, the throughput of the
proposed method improves by 96.7%, 46.2%, 10.2%, and
5.6%, respectively.

As the total traffic demand increases, the throughput of the
BHPA-LBDP, FPA, and DPA algorithms consistently surpasses
that of the RBH-FP and RBH-DP algorithms. This is mainly
because BHPA-LBDP, FPA, and DPA use reinforcement learn-
ing to select service cells for BH based on cell demand,
whereas RBH-FP and RBH-DP randomly select cells for
service. The throughput of RBH-DP is always higher than
that of RBH-FP, especially as the total demand increases, with
the gap between them gradually widening. This indicates that
intelligent PA significantly enhances overall throughput. This
is also validated by the comparison of throughput between the
BHPA-LBDP and FPA algorithms.

When the total demand is between 8000 and 20000 Mbps,
the throughput of the FPA and DPA algorithms shows little
difference, with FPA being slightly higher than FPA. This is
because both algorithms perform intelligent BH based on cell
demand, and the capacity of each beam exceeds the traffic
demand of each cell, resulting in a relatively minor impact
from PA on overall throughput. However, when the demand
exceeds 20000 Mbps, the throughput of DPA becomes signif-

icantly higher than that of FPA. This is mainly because, with
increasing total demand, DPA can flexibly allocate limited
power resources to different cells. Nevertheless, due to the
discretization of power by DPA and its joint decision on BHPA
within DT, its throughput is always lower than that of our
proposed BHPA-LBDP algorithm.

Fig. 8: The comparison of throughput versus total traffic demand for
different methods (the proposed BHPA-LBDP with α=β = 0.5).

Fig. 9: The throughput of 12 satellites among different algorithms.
(the proposed BHPA-LBDP with α=β = 0.5).

4) Performance of Delay Fairness: Fig. 10 illustrates the
relationship between the delay fairness of various methods and
the total traffic demand. Fig. 11 shows the average queuing
delay among different satellites for the five algorithms.

With the increase in total traffic demand, delay fairness
improves for all methods, as the limited beam resources are
insufficient to handle the excessive traffic, resulting queue
congestion. Throughout this process, the queueing delay of
intelligent BH algorithms (BHPA-LBDP, FPA, and DPA) re-
mains consistently lower than that of the random BH algo-
rithm. Our proposed BHPA-LBDP algorithm also maintains a
lowest queue delay. Compared to the RBH-FP, RBH-DP, FPA,
and DPA algorithms, the average queue delay is reduced by
46%, 43.23%, 10.8%, and 20.2%, respectively. Additionally,
comparing the three algorithms, i.e., BHPA-LBDP, FPA, and
DPA, reveals that PA decision-making based on actual channel
information on the satellite has significant advantages in
improving overall performance.
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Fig. 10: The delay fairness versus total traffic demand of different methods.
(the proposed BHPA-LBDP with α=β = 0.5).

Fig. 11: The delay fairness of 12 satellites among different algorithms.
(the proposed BHPA-LBDP with α=β = 0.5).

VI. CONCLUSION

This paper investigates the coordinated BH and PA problem
in multi-beam LEO satellite constellations to align limited
satellite resources with uneven service demands. Initially, a
digital-twin-based framework for coordinated BH and resource
optimization among multiple satellites is established. Ac-
knowledging the NP-hard nature of the optimization task, the
problem is decomposed into two subsidiary problems. First,
leveraging the multiple coverage offered by LEO satellite con-
stellations, cloud center is employed to select spatially isolated
BH patterns for each satellite. This approach balances inter-
satellite load demands, ensures equitable service provisioning,
and mitigates interference. Second, PA is dynamically man-
aged through a collaborative competitive mechanism among
beams within each satellite, catering to real-time needs. Fi-
nally, simulations validate that this methodology outperforms
existing BHPA schemes in terms of thoughput and delay
fairness.

In the future, we aim to develop a comprehensive resource
allocation strategy that integrates the optimization of BH,
spectrum, time, and power resources to maximize long-term
user data rates and minimize system power consumption. We
will focus on algorithms that leverage the combination of
digital twins and artificial intelligence to enable dynamic and
intelligent management of onboard resources, ensuring optimal

system performance in dynamic environments. Additionally,
we plan to introduce intelligent prediction mechanisms to
proactively identify and address potential interference and
resource bottlenecks, thereby enhancing overall system effi-
ciency and reliability. We anticipate that these improvements
will significantly improve the effectiveness of our proposed
joint BH and multi-dimensional resource allocation frame-
work, creating a more efficient and energy-saving communi-
cation environment for LEO satellite networks.
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