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Abstract—The simultaneous optimisation of beam hopping and power
allocation is a crucial technique for enhancing the performance of Multi-
Beam Satellite (MBS) systems. However, the previous joint optimisation
approaches cannot well handle with the issues of high-dimensional state
space and discrete-continuous hybrid action space. In this paper, we propose
a joint optimization approach based on parameterized reinforcement learn-
ing to simultaneously regulate beam hopping and power allocation for MBS
systems (called DeepMBS). In DeepMBS, a multi-objective problem is firstly
formulated to optimize system throughput and energy efficiency. Then, the
optimization problem is modelled as a Markov Decision Process (MDP), and
the original deep Q-network is extended with a parameterized action space
to simultaneously determine the beam hopping (discrete action) and power
allocation (continuous action). In addition, we design an empirical filtering
mechanism to enhance the performance of DeepMBS. Finally, the results of
extensive experiments demonstrate that the proposed DeepMBS can gain a
better performance in terms of throughput and energy efficiency compared
to the baseline algorithms. Furthermore, the proposed DeepMBS (EFM)
algorithm demonstrates superior accuracy and sensitivity in capturing
changes of communication demands.

Index Terms—Multi-beam satellite, deep reinforcement learning,
parameterized action space, beam hopping, power allocation.

I. INTRODUCTION

Satellite communication systems serve as a complement to terrestrial
communication systems, playing a vital role in 6 G space-air-ground
network [1], [2], [3]. Specially, multi-beam satellites have the charac-
teristics of wide coverage, large communication capacity and flexible
resource scheduling [1]. Whereas, the traffic in the coverage area is
geographically non-uniform and time-varying. Beam Hopping (BH) is
a key technology in MBS to solve this problem [4]. However, if beams
are illuminated with the same power, the provided transmission capacity
will still fail to match the uneven traffic among beams [5]. Also, the
on-board power of a satellite is extremely scarce. Therefore, the power
consumption of beams also should be well regulated along with BH.

However, it is challenging to jointly regulate beam hopping and the
limited on-board power to meet the uneven transmission demands in
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MBS. First, not only the throughput but also the energy efficiency
should be maximized to overcome the scarcity of power and avoid
energy waste. Second, this joint paradigm will increase the dimension
of system state space and action space, thus resulting in “curse of di-
mensionality”. Third, such joint paradigm lead to a discrete-continuous
hybrid action space [6], where the action variable of beam hopping is
discrete while that of power allocation is continuous. Approximating the
continuous action by an finite discrete set will lose the natural structure
of the continuous action, while relaxing the discrete action into a contin-
uous set will significantly increase the complexity of the action space.

Many research has been devoted to optimising beam hopping and
power allocation in MBS to improve the performance of MBS systems.
The works [7] and [8] have been devoted to the study of the beam hop-
ping problem and the power allocation problem of MBS, respectively.
Takahashi et al. [8] has proposed a new mathematical model for balanc-
ing the relationship between beam pointing and beam power to improve
the utilisation of satellite communication resources, demonstrating the
necessity and advantages of joint optimisation scheme of beam pointing
and transmit power over unidirectional optimisation scheme, but the
paper did not consider the beam hopping problem of MBS. Based on
this, Wang et al. [9] proposed a joint optimization algorithm to control
power allocation, beam scheduling, and terminal-timeslot assignment
for the coexisted BH-NOMA systems, and developed a bounding
scheme to tightly gauge the global optimum. Du et al. [10] devel-
oped a Deep Reinforcement Learning (DRL) based strategy combining
power allocation and beam hopping (PABH), which improves power
utilization and satellite throughput to a certain extent, and proves that
power allocation is feasible. However, the previous non-learning-based
methods are difficult to well capture the dynamics of the MBS systems,
while the existing DRL-based methods cannot well deal with the issue
of hybrid action space.

To address the above issues, we propose a novel joint optimization
algorithm to concurrently regulate beam-hopping and power allocation
for MBS based on parameterized DRL, named DeepMBS. To maximize
the total throughput as well as the power efficiency, a multi-objective
problem is firstly formulated. Then, to alleviate “curse of dimension-
ality” and well catch the dynamics of the MBS, a Markov Decision
Process (MDP) is modeled for each beam and the optimization problem
is then solved by using DRL in a polling paradigm. In order to tackle
the issue of discrete-continuous hybrid action space, we extend to the
original DRL (exactly deep Q-network (DQN) [7]) with the param-
eterized action space, which can simultaneously determine the beam
hopping (discrete action) and power allocation (continuous action)
without approximation or relaxation. In addition, in order to speed
up the convergence of DeepMBS, an experience filtering mechanism
is designed to store more suitable experiences for algorithm training.
The experimental results illustrate that DeepMBS can outperform the
baseline algorithms [7], [9], [10] in terms of throughput and energy
efficiency in MBS. Furthermore, the proposed DeepMBS (EFM) algo-
rithm demonstrates superior accuracy and sensitivity in capturing the
dynamic changes of communication demands.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The paper investigates the multi-beam satellite downlink in the Ka-
band, where the satellite is equipped with phased array antennas capable
of simultaneously providing up to K beams. Assume that the reference
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geosynchronous orbit (GEO) MBS system is time-slotted, the index of
time slots is t, and the duration of each time slot is d. The set of satellite
beams is denoted as K = {k|k = 1, 2, . . .,K}. Herein the coverage
area is assumed to be fixed within a time slot, and can be divided into a
set of cells, represented as N = {n|n = 1, 2, . . ., N} (K � N). The
K beams provide transmission service to N cells in a time-division
multiplexing manner, and one beam can only serve one cell at a time.
Full Frequency Reuse (FFR) is used between beams with the same
bandwidth Bc.

1) Traffic Model: Due to the time division multiplexing mecha-
nism, the satellite holds a buffer for each cell to cache the data packets
to be transmitted. Specifically, it is assumed that the number of packets
newly requested by cell n during t-th time slot is ρnt . The number of
packets in the buffer to be transmitted for cell n during t-th time slot is
φn
t , so the matrix of the number of packets to be transmitted for all cells

during t-th time slot is Φt = [φn
t |n ∈ N ]. Given the limited satellite

payload capacity and the timeliness of data services, we assume that
the satellite only store the data packets requested in the most recent zth
time slots and discard the earlier data.

2) Channel Model: According to ITU-R S.672-4 [10], the down-
link loss matrix H = {hk,n | k ∈ K, n ∈ N} from the on-board trans-
mitter to the user receiver can be calculated as

H=Θ ·Gu ·GB (1)

where Θ = diag{σ1, σ2, . . ., σN} indicates the channel gain matrix,
GB = {gbk,n | k ∈ K, n ∈ N} denotes the transmit antenna gain ma-
trix from the beam k to celln, andGU = diag{gu1 , gu2 , . . . , guN} stands
for the receive antenna gain matrix of the corresponding N cells.

3) Transmission Model: If cell n is illuminated by beam k, the
signal-to-noise ratio from beam k to cell n is

Γk,n =
hk,n · Pk

BcN0+
∑

i∈K,i �=n hi,n · Pi

(2)

where hk,n ∈ H denotes the loss from beam k to cell n, Pk is the
transmit power of beam k, N0 is the power spectral density of noise.
According to the DVB-S2 standard, the channel capacity can be ex-
pressed as

Ck,n
t = xk,n

t ·Bc · fDV B(Γ
k,n
t ) (3)

where xk,n
t denotes whether the beam k illuminates the cell n, if yes,

xk,n
t = 1, otherwise,xk,n

t = 0. Also,
∑

n∈N xk,n
t = 1, ∀k ∈ K. fDV B

is the performance mapping function [10]. Then, we can obtain the
amount of data actually transmitted to cell n during time slot t:

℘n
t = min{Cn

t d, φ
n
t } (4)

where Cn
t = Ck,n

t , k = argk{xk,n
t = 1}.

B. Problem Formulation

The objective of DeepMBS is to enhance system throughput and
energy efficiency by controlling the beam illumination cell (i.e., n) and
the transmission power of beams (i.e., Pk). Its objective function can
be expressed as follows:

opt. P1 = max
1
|T |

∑
t∈T

∑
n∈N

℘n
t

P2 = max
1
|T |

∑
t∈T

∑
n∈N

℘n
t∑

k∈K
Pk,t · d

s.t. C1 :
∑

k∈K
Pk ≤ Ptot

C2 :Pmin ≤ Pk ≤ Pmax

C3 :
∑

n∈N
xk,n
t = 1, ∀k ∈ K (5)

where T is the set of time slots, P1 is to maximize the throughput, and
P2 is to maximize the energy efficiency. The constraintC1 implies that
power consumption of all beams should be less than the total transmit
power, C2 means that the power of each beam must be in the range of
[Pmin, Pmax], C3 denotes that one beam can only serve one cell at a
time.

III. THE PROPOSED DEEPMBS ALGORITHM

In this section, the proposed DeepMBS based on parameterized Deep
Reinforcement Learning is described in detail.

A. Markov Decision Process Model

The joint beam-hopping and power allocation in MBS systems can
be considered as a sequential decision problem and characterised as a
discrete-time Markov-Decision Process (MDP) [4]. In order to alleviate
the “curse of dimensionality”, we treat each beam as a DRL agent,
named beam agent. Specifically, for any beam agent k (for simplicity,
the subscript k is omitted), the primary elements of MDP, including the
state space S, action space A, and reward function r can be defined as
follows.

State Space S: In this paper, the states of the MBS systems consists
of two parts: the matrix of the number of packets Φ and the downlink
loss matrix H of the MBS. Then, the sate vector s can be defined as
follows, and all possible s constitute the state space S.

s = (Φ,H). (6)

Action Space A: In DeepMBS, beam-hopping and power allocation
will be decided concurrently, so the action vector of the MBS a can be
expressed as follows, and all possible a constitute the action space A.

a = (n, P |n ∈ N , P ∈ P) (7)

where n means that the cell n is illuminated by the corresponding beam
k during time slot t, P denotes the transmission power of the corre-
sponding beam k, and P = [Pmin, Pmax]. It is noted that n is discrete
while P is continuous, thus the action space is discrete-continuous
hybrid.

Reward Function rt: In DeepMBS, the optimization objective is to
maximize the system throughput and the energy efficiency. Therefore,
the reward function of beam agent k can be defined as

rt = λ1℘
n
t + λ2℘

n
t /(Pk,t · d)− λ3η (8)

where λ1, λ2 and λ3 are normalized weight factors, n = argn{xk,n
t =

1}, and η = Pk/
∑

k∈K, Pk is a penalty factor for the beam agent k
when the constraint C1 in formula (5) is not satisfied.

B. DeepMBS Based on Parameterized DRL

As described above, the action space of jointly regulating beam
hopping and power allocation for MBS systems is a discrete-continuous
hybrid action space [6], where the action variable of beam hopping is
discrete while that of power allocation is continuous. Approximating
the continuous action by an finite discrete set will lose the natural
structure of the continuous action, while relaxing the discrete action into
a continuous set will significantly increase the complexity of the action
space. In addition, the original DRL approaches cannot be directly
used to handle with the hybrid action space. For example, the control
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problems with discrete action space are usually solved by applying the
Deep Q-Network algorithms [7], while policy-based methods [6] are
usually applied to deal with the control problems with continuous action
space.

Parameterized Action SpaceA′: In this paper, in order to address the
above problem, we introduce the parameterized action space into our
proposed DeepBMS without any relaxation and approximation. Then,
the parameterized action vector a′ is defined as:

a′ = (n, Pn|Pn ∈ P for alln ∈ N ) (9)

where a high level action n is firstly chosen from a discrete setN , and
all possible a′ constitute the action space A′. Upon choosing n, a low
level parameter Pn ∈ P , which is associated with the n-th high level
action, is then selected. It is noted that here Pn is a continuous set for
all n ∈ N .

Parameterized DRL: In the context of parameterized action
space, the action value function can be rewritten as Q(st, a

′
t) =

Q(st, nt, Pnt), where st ∈ S, nt ∈ N , Pnt ∈ P . Then, the Bellman
equation can be rewritten as

Q (st, nt, Pnt)

= E
rt,st+1

[
rt + γmax

n∈N
sup
Pn∈P

Q (st+1, n, Pn) |st = s

]
(10)

where γ is the discount factor.
For a given n and Q function, we can find that

PQ
n (s) = arg supPn∈P Q(s, n, Pn) (11)

is a function of the sate s. Therefore, we can approximate
Q(st, nt, Pnt) by using a deep neural network Q(st, nt, Pnt ;ω),
where ω is its network weights. Similarly, we can approximate PQ

nt
(st)

by using a deterministic policy network Pnt (st; θt), where θ stands for
its network weights. The reference for the neural network structure of
this algorithm is [11].

Just like the training procedure of DQN [12], the network weights
ω can be learned by minimizing the mean-square Bellman error via
gradient descent. The target value yt can be defined as

yt = r(st, a
′
t) + γmax

n∈N
Q (st+1, n, Pn (st+1; θt) ;ω

−) (12)

where ω− is the network weights of the target network Q′ =
Q(st, nt, Pnt ;ω

−). Then, the loss function can be defined as


Qt (ω) =
1
2
[Q (st, nt, Pnt ;ω)− yt]

2 (13)


Θt (θ) = −
∑
n∈N

Q (st, n, Pn (st; θ) ;ωt) (14)

Finally, ωt and θt can be updated via the gradients ∇ω

Q
t (ωt) and

∇θ

Θ
t (θt), respectively:

ωt+1 ← ωt − αt∇ω

Q
t (ωt)

θt+1 ← θt − βt∇θ

Θ
t (θt) (15)

where αt and βt denote the learning rate when updating ωt and θt,
respectively.

Other Tricks: 1) To reduce the solution space, we adopt the single-
agent polling multiplexing mechanism, which has been proven to have
superior performance in dealing with beam-hopping problems in our
previous work [4]. 2) To further improve the performance of the algo-
rithm, we add an empirical filtering mechanism (EFM) in DeepMBS,

named DeepMBS(EFM). That is, during the training process of the
algorithm, the experiences with low learning value (LLE) are filtered
out and the experiences with high learning value (HLE) are stored in the
replay buffer. LLE is defined as an experience where an agent receives
a low reward value and discrete actions are repeated over a period of
time. The details of the proposed DeepMBS is shown in Algorithm 1.

C. Complexity Analysis

This section discusses the time complexity of the DeepMBS(EFM),
which is determined by the neural network structure as well as the sizes
of the state space and action space. The DeepMBS(EFM) involves two
neural networks, denoted as P (θ) and Q(ω). Suppose P (θ) and Q(ω)
consist of LP and LQ fully connected layers, respectively. Taking into
account the bias terms adding in the fully connected layers, the time
complexity is calculated as follows:

σ(s)ζP0+2×
LP−1∑
l=0

ζPl ζ
P
l+1+σ(N)σ(P)ζPLP

+(σ(s) + σ(N)σ(P))ζQ0 +2×
LQ−1∑
l=0

ζQl ζQl+1+σ(N)ζPLP

= O

(
σ(s)ζP0+

LP−1∑
l=0

ζPl ζ
P
l+1+σ(N)σ(P)ζPLP

+(σ(s) + σ(N)σ(P))ζQ0 +

LQ−1∑
l=0

ζQl ζQl+1+σ(N)ζPLP

⎞
⎠ (16)

where ζPl and ζQl represent the number of neurons in the lth layer, l = 0
denotes the input layer, and l = LP or l = LQ indicates the output layer.
σ(s) represents the dimensionality of the state vector, σ(N) donates
the number of discrete action variables and σ(P) is the number of
continuous action variables. If the neural network structure is fixed, the
time complexity can be simplified as follows:

O(σ(s) + σ(N)N (P) + σ(N)) (17)

which entirely depends on the dimensions of the state vector and action
vector.

IV. EVALUATION

In this section, we describe the setup of our experiments and analyze
the experimental results.

A. Experiment Setup

We implemented a Ka-band MBS system using Python for simu-
lation experiments. In this system, a multi-beam satellite operates in
geostationary orbit at an altitude of 35786 km. The total bandwidth al-
located to the satellite is 500 MHz, and the total available transmit power
of the satellite is 34.5 dBw. The maximum transmit power per beam is
28 dBw, and the minimum transmit power per beam is 21 dBw. The
satellite’s multi-beam antenna has 7 beams, with an antenna aperture of
0.25 m. There are a total of 30 cells within the satellite coverage area.
The ground receiving antenna gain is 42.1 dBi, and the free space loss
is 209.6 dB (the same setting is used in [12]). Then, DeepMBS(EFM)
employs a two-layer fully connected feedforward neural network to
approximate Q(s, n, Pn;ω), with each layer containing 128 and 64
neurons, respectively, and using “ReLU” as the activation function. A
three-layer fully connected feedforward neural network is utilized to
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Algorithm 1: The DeepMBS Algorithm.
The Training Process

Input: Initialize exploration parameter ε, minibatch size B, replay
buffer 
, a probability distribution ξ, network weights ω0 and
θ0.

1: for t = 1, 2, . . ., T do
• Receive initial observation state st.
• Compute action parameters Pnt ← Pnt(st; θt).
• Select action a′t = (nt, Pnt) according to the ε-greedy

policy

• a′t = {
randomly selected from N , probability=ε
nt = argmaxnt∈N Q(st, nt, Pnt ;ωt), otherwise

• Take action a′t, observe reward rt and the next state st+1.
• Determine the value of the experience and store the HLE
[st, a

′
t, rt, st+1] into 
.

• Sample B transitions {sb,a′b,rb,sb+1}b∈B randomly from

.
• Calculate the target value yb according to the formula (12).
• Calculate the loss functions and gradients according to the

formula (13) and (14).
• Update the ωt and θt according to formula (15).

2: end for
The Polling Decision-Making Process

3: for beam k = 1 to K do
• Receive initial observation state skt .
• a′kt = (nk

t , Pnk
t
) is calculated through the well-trained

DeepMBS model and get next-state sk+1
t .

4: end for
• Obtain the joint beam-hopping and power allocation

strategy a′ = [a′1, a
′
2, . . ., a

′
K ] for MBS systems.

approximate Pn(s; θ), with each layer consisting of 128, 128, and 64
neurons, respectively. To ensure the output values fall within a symmet-
ric interval, “tanh” is used as the activation function for the output layer.
Additionally, the settings of other key parameters are as follows: initial
learning rates αt = βt = 0.0001, mini-batch size B = 128, discount
factor=0.99, Replay memory capacity 
 = 100000.

B. Baseline Algorithms

To verify the performance gain of our proposed DeepMBS algorithm
in terms of packet loss rate, throughput, queuing delay, and energy
efficiency defined in formula (5)-P2, we compare DeepMBS with the
following baseline algorithms:
� Random Algorithm: This approach randomly determines the il-

luminated cells and transmit power.
� Greedy Algorithm [9]: This approach selects K cells with the

highest communication demand and evenly allocates the transmit
power among the K cells.

� Genetic Algorithm [7]: In this method, cells and transmission
power are selected after G rounds of cross-mutation.

� DQN(EFM) [10]: This approach uses Deep Q-Network with
empirical filtering mechanism (EFM) to derive the optimal joint
beam hopping and power allocation strategy, where the continu-
ous transmission power P is discretized.

C. Performance Comparison

Convergence Analysis: Fig. 1 shows the convergence results of our
proposed DeepMBS and DeepMBS with EFM, i.e., DeepMBS(EFM).

Fig. 1. The normalized reward value.

In our experiments, the algorithms are iterated 3,600 times in each
episode. Both DeepMBS and DeepMBS(EFM) gradually become
converged after 200 episodes. In addition, it can be found that
DeepMBS(EFM) can achieve a better average reward than DeepMBS.
The reason is that EFM filters out the invalid LLEs from the experience,
and the remaining HLEs are more conducive to learning.

Performance Comparison: Firstly, as illustrated in Fig. 2(a)–(c), the
packet loss rate, system throughput and average queuing delay of almost
all algorithms show an increasing trend when the total communication
demand increases from 1,800 Mbps to 3,600 Mbps. In the case of low
communication demand, except for the Random algorithm, the other
four algorithms tend to have the same performance. This is because the
performance of MBS is less dependent on resource scheduling schemes
under lower communication demand. However, DeepMBS(EFM) out-
performs the four baseline algorithms when the communication demand
increases and exceeds 3,000 Mbps. In particular, when the commu-
nication demand is 3,600 Mbps, the throughput of DeepMBS(EFM)
is 14.3% higher than that of DQN(EFM) algorithm (the second best)
and 57.6% higher than that of Random algorithm (the worst). The
potential reason is that the DRL-based algorithms DeepMBS(EFM) and
DQN(EFM) can better catch the system dynamics and more emphasize
the long-term cumulative gains compared to other baseline algorithms.
In addition, DeepMBS(EFM) can accurately control power allocation
with its parameterized action space.

Secondly, the results of the energy efficiency at different com-
munication demands are shown in Fig. 2(d). It can be found
that DeepMBS(EFM) can achieve relatively stable energy effi-
ciency of about 0.72 Mbit/J under different communication de-
mands. Specifically, when the communication demand is 1,800 Mbps,
DeepMBS(EFM) can improve the energy efficiency by about 6.9% and
38.9% with respect to DQN(EFM) (the second best) and Random algo-
rithms (the worst), respectively. This is because that DeepMBS(EFM)
with parameterized action space can achieve a more accurate power
allocation, while the other baseline algorithms discretize the continuous
action (i.e., power allocation) and lose the natural structure of the con-
tinuous action. Whereas, when the communication demand increases
and approaches the maximum capacity of the MBS, almost every beam
k needs to work in full power mode, so almost all algorithms have high
energy efficiency in this case.

D. Performance Analysis of DeepMBS

In this section, we conducted more experiments to investigate the
efficacy of our proposed algorithm with different demand patterns and
optimization objectives.

In order to assess the generalization ability of DeepMBS (EFM), we
utilize two communication demand patterns with distinct characteristics
to drive our experiments. The “Type 1 demand pattern” has relatively
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Fig. 2. Performance comparison in terms of packet loss rate, system throughput, avg. queuing delay and energy efficiency. (a) The packet loss rate. (b) The
system throughput. (c) The avg. queuing delay. (d) The energy efficiency.

slow and slight fluctuations (the communication demand of a single
cell follows a normal distribution with a mean of e = DtotalN and a
variance of σ2

1 = 10, where Dtotal represents the total communication
demand and N represents the number of cells), making them easy to
be predicted in advance. In contrast, the “Type 2 demand pattern”
demonstrates dramatical fluctuations (the communication demand of a
single cell follows a normal distribution with a mean of e = DtotalN
and a variance of σ2

2 = 40). Under this pattern, the communication
demands may change suddenly and drastically, which requires the
proposed algorithm to adjust in time and flexibly.

In addition, to verify the necessity for joint optimization of through-
put and energy efficiency, we adapt the reward function with different
optimization objectives (i.e., 1) energy efficiency, 2) system throughput
or 3) energy efficiency and system throughput) for the DeepMBS(EFM)
algorithm. The combinations of different algorithms, communication
demand patterns, and reward functions are listed as follows:
� Baseline: DeepMBS(EFM) + “Type 1 demand pattern” + “joint

optimization of system throughput and energy efficiency”.
� Plan A: DeepMBS(EFM) + “Type 1 demand pattern” + “opti-

mization of energy efficiency”.
� Plan B: DeepMBS(EFM) + “Type 1 demand pattern” + “opti-

mization of system throughput”.
� Plan C: DeepMBS(EFM) + “Type 2 demand pattern” + “joint

optimization of system throughput and energy efficiency“.
� Plan D: DQN(EFM) + “Type 2 demand pattern” + “joint opti-

mization of system throughput and energy efficiency”.
where Baseline, Plan A and Plan B are compared to verify the

necessity for joint optimization of throughput and energy efficiency,
while Baseline, Plan C and Plan D are compared to illustrate the
generalization ability of DeepMBS(EFM).

The experimental results of the aforementioned schemes are il-
lustrated in Fig. 3. Firstly, it is evident that different communica-
tion demand patterns do affect the performance of the proposed al-
gorithm. DeepMBS(EFM) performs worse under “Type 2 demand
pattern” than “Type 1 demand pattern”. This discrepancy arises be-
cause when communication demand undergoes significant fluctuations,
the DeepMBS(EFM) algorithm may not be able to fully adapt to
such changes, resulting in a slight decrease in performance. Nonethe-
less, the overall performance of DeepMBS(EFM) under “Type 2 de-
mand pattern” still outperforms that of DQN(EFM). This shows that
DeepMBS(EFM) can more accurately and sensitively capture the dy-
namic changes of communication demand, and have better generaliza-
tion ability than DQN(EFM).

Furthermore, we find that different reward functions would have
different effects on the performance of the proposed algorithm. Specif-
ically, when the reward function incorporates system throughput and
energy efficiency simultaneously (i.e., λ1=λ2= 0.5, Baseline), the
system achieves a maximum throughput of 2865.62 Mbps and a peak
energy efficiency of 0.72 Mbit/J. In contrast, when the reward function

Fig. 3. Performance comparison in terms of system throughput and energy
efficiency. (a) The system throughput. (b) The energy efficiency.

is solely based on energy efficiency (i.e., λ1= 0, Plan A), the system
achieves a maximum throughput of 2383.24 Mbps and the highest
energy efficiency of 0.78 Mbit/J. Conversely, with the reward function
solely focusing on system throughput (i.e., λ2= 0, Plan B), the system
attains a maximum throughput of 2944.83 Mbps and a peak energy effi-
ciency of 0.65 Mbit/J. That is to say, the Baseline sacrifices 0.06 Mbit/J
of energy efficiency to achieve a higher throughput of 482.38 Mbps than
Plan A. In contrast, compared to Plan B, the Baseline trades 79.21 Mbps
of throughput for an improvement of 0.07 Mbit/J in energy efficiency.
Through the comprehensive analysis, it is clear that integrating both
system throughput and energy efficiency in the reward function can get
better overall performance. This verifies the necessity of conducting
multi-objective optimization.

V. CONCLUSION

In this paper, we propose a novel joint optimization algorithm based
on parameterized DRL to concurrently regulate beam hopping and
power allocation in MBS systems, named DeepMBS. In DeepMBS,
a multi-objective problem is firstly formulated to optimize system
throughput and energy efficiency. Then, the optimization problem is
modelled as a MDP, and the original deep Q-network is extended with
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a parameterized action space to simultaneously determine the beam
hopping (discrete action) and power allocation (continuous action).
Finally, we carry out extensive experiments by combining three types of
reward functions with two different communication demand patterns,
and the results illustrate that the proposed DeepMBS can improve
the system throughput by 14.3% to 57.6% and improve the energy
efficiency by 6.9% to 38.9% compared to the baseline algorithms.
In addition, the proposed DeepMBS(EFM) can more accurately and
sensitively capture the dynamic changes of communication demands.
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