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AbstrAct
Interest flooding attacks (IFAs) are wide-

ly regarded as being among the most harmful 
security risks in named data networking (NDN). 
Through an IFA, the attacker injects numerous 
Interest packets into a network to drain network 
resources such as bandwidth, caching capacity, 
and computational capacity, which can seriously 
affect the normal data content requests of legiti-
mate consumers and degrade the network quality 
of service (QoS). To design a high-efficiency IFA 
mitigation scheme, it is critical to detect attacks 
accurately and rapidly. Therefore, there is high 
interest in developing an optimized attack detec-
tion scheme. In this study, the concept of an 
isolation forest (iForest) is introduced to develop 
an IFA detection mechanism in which the iForest 
construction process isolates abnormal and legit-
imate prefixes. This approach enables malicious 
prefixes to be identified among abnormal prefixes 
to mitigate IFAs by restricting the forwarding of 
malicious Interest packets. The results of extensive 
simulations show that the proposed iForest-based 
IFA detection mechanism (IFDM) outperforms 
other related schemes in terms of attack detection 
accuracy and speed and thus can offer effective 
support for preserving NDN QoS.

IntroductIon
Named data networking (NDN) is one type of 
deployment for information-centric networking 
(ICN). It is an emerging network architecture 
widely recognized as a promising next-genera-
tion Internet architecture candidate thanks to its 
distinct features that support name-based content 
sharing, coupling routing, mobility support, Inter-
net-of-Things, etc. [1–3]. In an NDN, each data 
object is assigned a unique name that consists 
of a globally routable prefix and a specific suf-
fix, which is an identifier generated by the data 
content owner (i.e., the Producer). If a user (i.e., 
a Consumer) intends to access specific data con-
tent, an Interest packet is generated containing 
the name of the desired data contents and is sent 
to the NDN as a request explore the data con-
tents. When the Producer receives the Interest 
packet, it encapsulates the corresponding data 

contents requested by the Consumer into a Data 
packet with the same name and returns it to the 
Consumer along the reverse path of the Interest 
packet. 

As in other types of networking paradigms, 
security is intensively considered in the NDN pro-
tocol stack design. Consequently, NDN is intrinsi-
cally able to resist many typical kinds of network 
attacks, such as bandwidth depletion attacks, 
reflection attacks, and black-holing by prefix 
hijacking [4]. However, in recent years, a new 
type of distributed denial of service (DDoS) attack 
specifically aimed at NDNs has emerged, called 
an interest flooding attack (IFA) [5]. IFAs work 
based on the idea that the information in each 
Interest packet will be recorded by the pending 
interest table (PIT) of an NDN router during its 
forwarding process. The record will be preserved 
until either the router receives a corresponding 
Data packet or the PIT timeout interval elapses. 
Consequently, attackers can create large numbers 
of Interest packets and inject them into the net-
work to fill up the PIT capacity, link bandwidth, 
computation capacity, and other network resourc-
es and degrade the quality of service (QoS) pro-
vided to legitimate Consumers. Depending on the 
type of data content requested by an attacker, an 
IFA can be implemented in any of the following 
three ways.
1. Using a static attack, the attacker generates 

Interest packets to request an existing con-
tent item. In this situation, the NDN distribut-
ed caching function can handle the requests, 
effectively mitigating the harm caused by the 
IFA.

2. Using a dynamic attack, the attacker creates 
Interest packets dynamically to request dif-
ferent existing content items. In this case, 
the NDN routers must handle each request 
by creating a PIT record and transmitting an 
Interest packet according to the forwarding 
information base (FIB) to explore the Pro-
ducers. This process consumes substantial 
caching and computation resources of both 
routers and Producers.

3. Using a non-existent attack, termed a mali-
cious attack in this article, the attacker 
creates Interest packets that correspond 
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to non-existent content items. To increase 
the detection difficulty, the names of these 
Interest packets have the form “/legitimate_
prefix/non-existent_suffix/,” where “/legiti-
mate_prefix/” is a name prefix that exists in 
the network, while “/non-existent_suffix/” is 
a randomly forged suffix. Because no satis-
factory Data packets can be generated, the 
PIT entries of the NDN router will remain 
occupied until their lifetimes expire. Com-
pared with static and dynamic attacks, mali-
cious attacks have more destructive effects 
on the NDN core network: they are easy to 
implement and can cause the NDN routers 
to malfunction or even become disabled, 
making such attacks difficult to counteract. 
Consequently, most attacks on NDNs are 
malicious attacks.
IFAs are already among the most prevalent and 

destructive types of network attacks addressed in 
NDN security research. Consequently, they have 
attracted increasing attention in the academic 
community in recent years. The existing research 
on IFA detection has mainly focused on PIT state 
information (such as the PIT occupation ratio and 
the number of received Data packets) to iden-
tify abnormal scenarios and determine attacks. 
However, if the PIT of an upstream router is fully 
occupied by malicious Interest requests records, 
it will discard subsequent Interest packets, includ-
ing both legitimate and malicious Interest pack-
ets, which will affect the data content requests 
of legitimate Consumers and can even result in 
the routers misjudging legitimate Interest pack-
ets as malicious Interest requests. To improve 
attack detection accuracy, an isolation forest 
(iForest)-based IFA detection mechanism (IFDM) 
is developed in this study that reduces misjudg-
ments and enables efficient recognition of attack-
ing Interest requests. When an IFA occurs, the 
number of Interest packets with specific prefixes 
increases abnormally, and the IFDM can identify 
the malicious prefixes used by the attackers by 
constructing an iForest where routers can com-
pare the characteristics among prefixes. Thus, this 
approach can reduce the negative effects caused 
by IFA detection misjudgments.

relAted Works
In 2009, Jacobson et al. [5] first proposed the 
concept of an IFA, its generation mechanism, and 
attack features in a content-centric network. Since 
then, IFAs have attracted increasing attention. Dai 
et al. [6] proposed an Interest traceback mecha-
nism to mitigate IFAs, by which NDN routers gen-
erate spoofed Data packets, that are intentionally 
created to satisfy the suspicious Interest requests 
and to identify the interfaces connected with the 
attackers after a router detects an abnormal PIT 
status. Afanasyev et al. [7] investigated three algo-
rithms to mitigate IFAs based on the idea that an 
Interest packet corresponds to at most one Data 
packet. Satisfaction-based pushback algorithms 
are explored to prevent overreactions and unfair 
penalization. Similarly, Compagno et al. [8] pro-
posed an IFA countermeasure mechanism called 
Poseidon, in which an NDN router calculates the 
ratio between the numbers of incoming Inter-
est packets and outgoing Data packets for all 
interfaces along with the PIT usage. If these two 

parameters exceed preset thresholds, the router 
determines that an attack is occurring and miti-
gates it by restricting the input of Interest pack-
ets and sending a warning message to adjacent 
routers. To locate the attacking source accurate-
ly for effective IFA mitigation, Vassilakis et al. [9] 
divided Consumers into three categories, includ-
ing legitimate Consumers, suspicious Consumers, 
and attackers, based on the numbers of expired 
PIT entries at the edge routers. Then, they take 
different actions for different types of consum-
ers. Furthermore, Xue et al. [10] proposed an IFA 
detection mechanism that works at edge routers 
directly connected to Consumers and identifies 
malicious prefixes by calculating the Interest sat-
isfaction ratio (ISR), which is the ratio between 
the numbers of received Data responses and 
transmitted Interest requests at each interface of 
the edge router. Then, malicious Interest packets 
are restricted according to a preset ISR threshold. 
To improve the recognition accuracy, Xin et al. 
[11] presented an IFA defense method based on 
cumulative and relative entropy, in which cumu-
lative entropy is used to calculate the distribu-
tion of Interest packet names to detect abnormal 
requests, and relative entropy is used to identify 
malicious prefixes and restrict attacker behavior 
by using an Interest traceback approach. Zhi et al. 
[12] proposed a Gini impurity-based IFA detection 
method that effectively reduces the misjudgment 
rate and distinguishes malicious prefixes. Similar-
ly, according to the name distribution of interest 
packets, Hou et al [13] proposed an IFA defense 
method based on Theil index, which divides inter-
est packets into intra-group and inter-group, and 
detects IFA by the variation of intra-group and 
inter-group differences. However, these mecha-
nisms may have limitations when attackers use 
more covert interest pakcet names. Zhang et al. 
[14] comprehensively analyzed the benefits of 
the NDN architecture to defend against DDoS 
attacks, especially Interest flooding, and proposed 
a fine-grained Interest traffic-throttling method 
that limits malicious Interest traffic by offloading 
negative acknowledgements (NACK) packets to 
edge routers.

To further reduce misjudgments, improve 
the attack detection accuracy, and diminish the 
impact on legitimate Consumers, this paper intro-
duces the idea of IForest which originated in the 
data mining field [15], and develops an IFDM to 
enable more effective attack recognition. Regard-
ing the essence and features of the IFA, attackers 
always use parts of existing prefixes to generate 
malicious Interest packets and send them at a high 
rate. Consequently, these prefixes will show char-
acteristics that differ from those of legitimate pre-
fixes. Through the IFDM, an iForest is constructed 
to categorize malicious and legitimate prefixes 
based on two considerations: first, the number of 
malicious prefixes is much smaller than the total 
number of existing prefixes in the NDN, and sec-
ond, the representations of malicious prefixes are 
different from those of legitimate prefixes.

IForest-bAsed IFA countermeAsure
During IFA detection, according to the name pre-
fix, each NDN router performs a round of attack 
detection at a fixed time interval to identify mali-
cious prefixes. This section first describes the pre-

Through the IFDM, an iForest 
is constructed to categorize 

malicious and legitimate 
prefixes based on two con-
siderations: first, the num-
ber of malicious prefixes is 
much smaller than the total 
number of existing prefixes 
in the NDN, and second, the 

representations of malicious 
prefixes are different from 

those of legitimate prefixes.
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fix data construction and then discusses IFDM for 
attack detection in detail.

PreFIx dAtA constructIon
During each detection cycle, according to the 
name prefix, the NDN router counts the num-
ber of sent Interest packets (SIP_NUM), received 
Data packets (RDP_NUM), entries recorded in 
the PIT (RP_NUM), and expired PIT entries (EP_
NUM) in real time. Then, these four statistical val-
ues are used as name prefix attributes to construct 
a prefix data table. For example, during a specific 
detection period, if a router sends seven Interest 
packets with the name prefix “/prefix_01/” and 
receives five Data packets with the same name 
prefix, then there will be two entries with “/pre-
fix_01/” recorded in the PIT, and no PIT entries 
where “/prefix_01/” has expired. Thus, the prefix 
data for “/prefix_01/” can be constructed as fol-
lows: SIP_NUM = 7, RDP_NUM = 5, RP_NUM = 
2, and EP_NUM = 0.

detectIon Process
This section describes how to construct an iFor-
est to separate malicious prefixes from legitimate 
prefixes in the NDN to achieve IFA detection. 
An iForest is composed of isolation trees (iTrees) 
that have a binary tree structure. From the prefix 
data set, n different prefix data are selected to 
serve as a training set for iTree construction. The 
process of building an iTree is as follows. First, an 
attribute q is randomly selected from SIP_NUM, 
RDP_NUM, RP_NUM, and EP_NUM and used 
as an isolation attribute. Then, an isolation value p 
is randomly selected from the range between the 
minimum and maximum values of the isolation 
attribute values in the training set. Here, q and p 
constitute the isolation information stored in an 
internal node of the iTree such that the prefix data 
in the training set with values less than p form the 
left child node, while those with values equal to 
or larger than p form the right child node. The 
prefix data in the left and right child nodes are 
recursively selected and divided until one of the 
following three conditions is satisfied:
1. The iTree reaches a predetermined height 

limit (which is approximately the average 
tree height) [15]

2. The attributes and values of the remaining 
prefix data are all identical

3. The prefix data can no longer be divided. 
Following this procedure and these rules, an 
iTree is constructed, and all the prefix data in 
the training set are stored in the external nodes 
(leaf nodes). By randomly selecting prefix data 
many times to form different training sets, many 
iTrees can be constructed, forming an iForest. 
Then, when an IFA occurs in the NDN, it is easy 
to separate the malicious prefixes in the isolation 
process due to their characteristics: the malicious 
prefixes will be isolated close to the root node of 
the tree and have short path lengths, while the 
legitimate prefixes will be isolated further from the 
root node and have longer path lengths.

After the iForest is constructed, all the prefix 
data are traversed through each iTree based on 
the isolation information in the node, and the 
path length, which reflects the number of edges 
that the prefix data must traverse from the root 
node to the external node, will be recorded. After 

the prefix data traverse all iTrees, multiple path 
lengths will be obtained. By using these path 
lengths, the average path length, which is the 
ratio of the total path length to the number of 
trees, can be calculated.

The result is that prefix data with shorter aver-
age path lengths are more likely to be malicious, 
while prefix data with longer average path lengths 
are less likely to be malicious. To reflect anom-
alies in the prefix data more clearly, an abnor-
mality score can be calculated to describe the 
prefix data based on the average path length of 
an unsuccessful search in a binary search tree 
(BST) [15]. Then, the abnormal scores of all the 
prefix data are sorted from large to small, and the 
following properties exist:
1. If the abnormality score of the prefix data is 

close to 1, it is highly likely that the prefix is 
malicious;

2. If the abnormality score of the prefix data is 
less than 0.5, the prefix can be designated as 
legitimate;

3. If the abnormality scores of all prefix data 
are approximately 0.5, there is no malicious 
prefix.
Based on these properties, if the abnormality 

score of the prefix data exceeds a threshold Th, 
then the prefix data are considered abnormal. At 
the same time, to avoid the effects of traffic fluc-
tuations, a prefix with a PIT occupancy rate higher 
than Tr among the abnormal prefixes is consid-
ered a malicious prefix.

In the iForest construction stage, t iTrees must 
be built, and therefore the time complexity is O(t-
nlogn), where n is the size of the training set. In 
the prefix data traversal and analysis phase, the 
time complexity is O(Ntlogn), where N is the size 
of all prefix data.

IFA mItIgAtIon
When a router detects an attack, an IFA mitiga-
tion function will be triggered, after which the 
NDN router will send notification packets and 
restrict the forwarding of subsequent malicious 
Interest packets. That is, after a router detects 
an attack and has identified a malicious prefix, 
it generates a notification packet and forwards 
it to downstream routers. The notification pack-
et contains the pertinent information about the 
detected malicious prefixes to inform the down-
stream routers of the attack. Moreover, it restricts 
forwarding of malicious Interest packets after the 
attack. Therefore, the PIT entries occupied by the 
malicious Interest packets in the router will expire, 
and the PIT size will gradually return to normal, 
minimizing the impact on legitimate Consumer 
requests.

sImulAtIons
This section describes our evaluation experiments 
conducted from four perspectives to demon-
strate the accuracy and efficiency of the IFDM 
approach. First, we verify the accuracy of the 
IFDM method when an attack appears. Then, 
we investigate the misjudgment avoidance per-
formance during attack detection at different 
NDN routers. To demonstrate the efficiency of 
the IFDM approach, in the third experiment, we 
compare the performance of the IFDM method 
with three typical IFA countermeasures, i.e., the 

When a router detects an 
attack, an IFA mitigation 

function will be triggered, 
after which the NDN router 

will send notification 
packets and restrict the 

forwarding of subsequent 
malicious Interest packets. 

That is, after a router 
detects an attack and has 

identified a malicious prefix, 
it generates a notification 
packet and forwards it to 

downstream routers.

HOU_LAYOUT.indd   100HOU_LAYOUT.indd   100 3/29/21   5:13 PM3/29/21   5:13 PMAuthorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on March 29,2022 at 00:16:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • March 2021 101

expired-PIT-, entropy-, and Gini impurity-based 
mechanisms. Finally, the capabilities and effec-
tiveness of the IFDM technique against IFAs are 
verified by changing the number of attackers.

PArAmeter settIngs
As shown in Fig. 1, a binary tree structure is used 
as the simulation network topology because it is 
widely used as a typical topology to evaluate the 
performance of the IFA. It is widely regarded as 
one of the most delicate topologies and can be 
seriously affected by IFAs. Therefore, we selected 
the commonly used typical binary tree topology 
to verify the accuracy and efficiency of the pro-
posed IFDM. In this topology, Interest packets 
are sent by both Consumers and attackers, and 
all the traffic will be forwarded to R1, which is 
the gateway of the content Producer, resulting 
in the accumulation of a large number of Interest 
packets. For simplicity, but without loss of gen-
erality, one content Producer, 15 NDN routers, 
14 Consumers, and 2 attackers are used in this 
simulation. The simulation duration is 15 s, attack 
detection cycle is performed every 100 ms, and 
packets require 10 ms of transmission time for 
each hop. The maximum capacity of the PIT is set 
to 300 entries, and each PIT record has a lifetime 
of 500 ms. In the iForest, the size of training set n 
is set to 256, the number of iTrees is 100, and Th 
and Tr are set to 0.7 and 10 percent, respectively. 
In this simulation, the Consumers send legitimate 
Interest packets to request existing data content 
at a rate of 200 request per second (RPS), while 
the attackers launch an IFA at the fifth second 
by randomly sending malicious Interest packets 
to request non-existent data content at a rate of 
1000 RPS. 

IFdm AccurAcy
To elucidate the effects of IFAs on the NDN and 
the accuracy of the proposed IFDM approach, 
the obtained implementation results are shown 
in Fig. 2, which presents the size of the PIT for 
router R1. As Fig. 2 shows, under non-attack con-
ditions, the PIT size of R1 remains stable. How-
ever, when an attack occurs at an attack rate of 
1000 RPS, the PIT will fill up rapidly because no 
corresponding Data responses will be able to sat-
isfy the recorded Interest request entries. How-
ever, when the IFDM approach is applied to a 
network that experiences an IFA, the network’s 
performance improves significantly, as shown in 
Fig. 2. The PIT can recover to normal status in 
approximately only 0.8 s after the attack begins 
since the IFDM approach detects the attack and 
mitigates it before the PIT is completely occupied.

IFdm mIsjudgment AvoIdAnce
As mentioned earlier, misjudgments often occur 
when NDN routers rely primarily on PIT status 
values such as the PIT expiration rate and ISR to 
identify attacks. In these cases, the router con-
siders that an IFA is occurring when the values 
of the relevant PIT and ISR parameters exceed a 
preset threshold or the normal range. Then, the 
router reduces the Interest packet sending rate, 
which may affect legitimate users. To explain mis-
judgment more clearly, we compare the IFDM 
technique with the expired-PIT-based detection 
mechanism, as shown in Fig. 3, where “1” and 

“0” denote a detected attack and no attack, 
respectively. Although R12 connects with legiti-
mate Consumers, the expired-PIT-based mecha-
nism declares the occurrence of an IFA because 
malicious Interest packets occupy the PIT of its 
upstream router, causing no corresponding Data 
packets to be received and resulting in expired 
PIT entries in R12. As a result, R12 will make a 
misjudgment. In contrast, when the IFDM scheme 
is used, there will be no misjudgment in R12 
under the same conditions. From Fig. 3, it is clear 
that for R13, which is directly connected to an 
attacker, while both the expired-PIT-based and 
IFDM mechanisms detect the attack, the IFDM 
approach achieves detection earlier. In fact, the 
expired-PIT-based mechanism must wait until the 
number of expired PIT entries reaches the thresh-
old, resulting in a time delay.

IFdm eFFIcIency
To demonstrate the efficiency of the IFDM 
approach, we compare the IFA defense perfor-
mances by the IFDM scheme with those of three 
other representative IFA countermeasures in this 
section. As shown in Fig. 4, at an attack rate of 
1000 RPS, the PIT size increases rapidly after the 
attack is launched at the fifth second, causing the 

FIGURE 2. PIT size under IFDM and under no defense during attack.
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FIGURE 1. Binary tree topology used in the simulation.
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expired-PIT-based mechanism to reach almost 
100 percent, while the IFDM approach effectively 
restrains the rapid PIT size increase. In addition, 
the IFDM scheme returns the PIT to normality in 
the shortest time among the four IFA countermea-
sures. In fact, due to misjudgments, the expired-
PIT-based mechanism regards some legitimate 
Consumers as suspicious Consumers or attack-
ers and subsequently restricts their data requests. 
Consequently, the PIT size is smaller than normal 
during the later stage, and the number of Data 
packets received is greatly reduced. In contrast, 
the entropy- and Gini impurity-based mechanisms 
can restore the PIT size to normal after the IFA 
is detected. However, the entropy-based mech-
anism must wait for the cumulative entropy to 
increase continuously and exceed the threshold, 
leading to a longer detection time and relatively 
large PIT size. Furthermore, the number of Data 
packets received at the beginning of the attack 
is reduced. The performance of the Gini impuri-
ty-based mechanism is similar to that of the IFDM 
technique. Both approaches enable rapid attack 
detection, suppress the forwarding of malicious 
Interest packets, and maintain the number of 
Data packets received at a higher level. However, 

the PIT size resulting from the Gini impurity-based 
mechanism is larger than that under the IFDM. As 
shown in Fig. 4, the PIT size increase under each 
scheme, but the proposed IFDM scheme yields 
the smallest PIT size. Furthermore, the IFDM 
method ensures that data requests from legiti-
mate Consumers are not suppressed; therefore, 
it effectively prevents IFAs from seriously affecting 
the network and Consumers.

cAPAbIlIty And eFFectIveness oF IFdm AgAInst IFAs
The effectiveness of the IFDM scheme in response 
to different numbers of attackers in the network 
is verified by the results shown in Fig. 5. When 
there are two attackers, the IFDM scheme quick-
ly detects the malicious prefixes and takes cor-
responding actions. As the number of attackers 
increases, numerous malicious Interest packets 
pour into the network, and the occupancy rate 
of the PIT increases substantially. When there are 
eight attackers, the PIT size increases rapidly, and 
its occupancy rate reaches 100 percent. Although 
the PIT size gradually increases as the number of 
attackers increases, it is still eventually reduced to 
the normal range, improving the QoS provided to 
Consumers.

conclusIons
IFAs can cause network security problems that 
cannot be ignored. This article proposed an 
IFDM scheme to defend against IFAs. Using the 
proposed approach, an iForest is used to isolate 
abnormal prefixes by calculating an abnormali-
ty score for each prefix datum. Then, malicious 
prefixes can be identified among the abnormal 
prefixes based on the numbers of PIT entries 
used. Furthermore, rate limitation is utilized to 
prevent malicious packets from entering the 
network, providing IFA mitigation. Finally, the 
simulation results demonstrated that the IFDM 
approach successfully reduces the misjudgments 
caused by packet losses after PIT overflow and 
improves the attack identification accuracy. 
Compared with several typical mechanisms, the 
IFDM scheme effectively reduces the occupation 
of PIT resources and improves the QoS of legiti-
mate Consumers. Thus, the IFDM approach can 
effectively defend an NDN against IFAs. In future 
work, we plan to conduct research in more real-

FIGURE 4. Comparison of the proposed IFDM approach with three other mechanisms: (a) PIT size; and (b) number of Data packets received.
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FIGURE 3. Detection of IFAs on routers R12 and R13.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

1
IF

A
 d

et
ec

tio
n

Expired PIT-R12
IFDM-R12
Expired PIT-R13
IFDM-R13

HOU_LAYOUT.indd   102HOU_LAYOUT.indd   102 3/29/21   5:13 PM3/29/21   5:13 PMAuthorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on March 29,2022 at 00:16:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • March 2021 103

istic network environments and with more com-
plex attack models.
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FIGURE 5. PIT size under different numbers of attackers.
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