
3560 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

Cluster Frameworks for Efficient Scheduling and
Resource Allocation in Data Center Networks:

A Survey
Kun Wang , Senior Member, IEEE, Qihua Zhou, Student Member, IEEE, Song Guo , Senior Member, IEEE,

and Jiangtao Luo , Senior Member, IEEE

Abstract—Data centers are widely used for big data analytics,
which often involve data-parallel jobs, including query and web
service. Meanwhile, cluster frameworks are rapidly developed
for data-intensive applications in data center networks (DCNs).
To promote the performance of these frameworks, many efforts
have been paid to improve scheduling strategies and resource
allocation algorithms. With the deployment of geo-distributed
data centers and data-intensive applications, the optimization in
DCNs regains pervasive attention in both industry and academia.
Many solutions, such as the coflow-aware scheduling and specula-
tive execution, have been proposed to meet various requirements.
Therefore, we present a solid starting ground and comprehensive
overview in this area to help readers quickly understand state-
of-the-art technologies and research progress. We observe that
algorithms in cluster frameworks are implemented with different
guidelines and can be classified according to scheduling granular-
ity, controller management, and prior-knowledge requirement. In
addition, mechanisms for conquering crucial challenges in DCNs
are discussed, including providing low latency and minimizing
job completion time. Moreover, we analyze desirable properties
of fault tolerance and scalability to illuminate the design prin-
ciples of distributed systems. We hope that this paper will shed
light on this promising land and serve as a guide for further
researches.

Manuscript received February 21, 2018; revised June 13, 2018; accepted
July 14, 2018. Date of publication July 20, 2018; date of current ver-
sion November 19, 2018. This work was supported in part by NSFC
under Grant 61872195 and Grant 61572262, in part by the China Post-
Doctoral Science Foundation under Grant 2017M610252, in part by the
China Post-Doctoral Science Special Foundation under Grant 2017T 100297,
in part by the Open Research Fund of the Jiangsu Engineering Research
Center of Communication and Network Technology, NJUPT, in part by the
National Engineering Research Center of Communications and Networking
(Nanjing University of Posts and Telecommunications) under Grant
TXKY17014, in part by the Shenzhen Basic Research Funding Scheme under
Grant JCYJ20170818103849343, and in part by the Chongqing Municipal
Project under Grant cstc2015jcyjBX0009 and Grant CSTCKJCXLJRC20.
(Corresponding author: Kun Wang.)

K. Wang is with the Jiangsu Engineering Research Center of
Communication and Network Technology, Nanjing University of Posts and
Telecommunications, Nanjing 210003, China, and also with Department of
Computing, The Hong Kong Polytechnic University, Hong Kong, China
(e-mail: kwang@njupt.edu.cn).

Q. Zhou is with the National Engineering Research Center
of Communications and Networking, Nanjing University of
Posts and Telecommunications, Nanjing 210003, China (e-mail:
kimizqh@foxmail.com).

S. Guo is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: song.guo@polyu.edu.hk).

J. Luo is with the Electronic Information and Networking Research
Institute, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China (e-mail: Luojt@cqupt.edu.cn).

Digital Object Identifier 10.1109/COMST.2018.2857922

Index Terms—Scheduling, cluster frameworks, data center
networks, big data, data-parallel jobs, resource allocation, coflow,
distributed systems.

ACRONYMS

DCNs Data Center Networks
HPC High Performance Computing
FCT Flow Completion Time
CCT Coflow Completion Time
JCT Job Completion Time
TCP Transmission Control Protocol
RDD Resilient Distributed Dataset
GFS Google File Systems
DAG Directed Acyclic Graph
SFF Shortest Flow First
FIFO First In First Out
FCFS First Come First Served
SRPT Shortest Remaining Processing Time
WSS Weighted Shuffle Scheduling
PFF Per Flow Fairness
PFP Per Flow Priority
SEBF Smallest Effective Bottleneck First
MADD Minimum Allocation for Desired Duration
CLAS Coflow-Aware Least-Attained Service
EDF Earliest Deadline First
PDQ Preemptive Distributed Quick
MRTF Minimum Remaining Time First
PFC Priority Flow Control
DBSCAN Density Based Spatial Clustering Applications

with Noise
BSP Bulk Synchronous Parallel
RCP Rate Control Protocol
ECMP Equal Cost Multi Path
TC Transfer Controller
ITC Inter Transfer Controller
DCTCP Data Center TCP
D2TCP Deadline Aware Data Center TCP
ECN Explicit Congestion Notification
OLDI Online Data Intensive

I. INTRODUCTION

W ITH the rapid development of information tech-
nology, our society has stood at doorstep of big

1553-877X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9099-2781
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0002-9160-3047

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3561

data [1], [2]. To handle the rapid increment of computation
requirements [3], [4], data centers are widely used [5]–[7]
for data-intensive applications, including query, web ser-
vice and big data analytics [8]–[12]. Computing in data
center networks (DCNs) provides unparalleled mobility and
ubiquitous data accessibility, which can make service more
acceptable. Data centers are warehouses that host a large num-
ber of servers, providing data-processing service [13] and
enabling communications among large amounts of comput-
ing resources [14]. Many high performance computing (HPC)
clusters have been implemented to process jobs in DCNs. For
example, MapReduce [15] is a model using the re-execution
technology for fault tolerance. Meanwhile, Dryad [16] is
a system that executes data-parallel applications in coarse-
grained granularity. In addition, to promote the iteration
procedure in data-intensive applications, Spark [17] chooses a
coarse-grained division to task stages instead of a fine-grained
scale.

Although the diversity exists in different cluster frameworks,
some common patterns can be extracted. We observe that the
transmission between multi-stages in tasks has a significant
impact on job-level performance and contributes large parts
of the completion time. The deficiency of network transmis-
sion incurs many problems, which inspire the performance
improvement in DCNs. As data-parallel applications gener-
ate gigantic amount of network traffic, most cluster frame-
works [15]–[18] concentrate on the transmission optimization
of cluster frameworks. Meanwhile, determining the schedul-
ing strategy and resource allocation algorithm is one of the
most crucial issues [19]–[27]. To the best of our knowledge,
existing researches [13], [28]–[32] do not cover coordination
principles, desirable properties (e.g., data distribution, prior
knowledge and control scheme), and corresponding evaluation
metrics. Considering the above absences, we are encouraged
to conduct this survey. As one of the most desirable met-
rics for evaluation, task throughput of a data center can be
reflected by the average job completion time (JCT) [33]. The
data transmission in DCNs generates the traffic called flows.
A flow is defined as a sequence of packets sent from a source
to a destination [34], and the flow completion time (FCT)
directly influences JCT. Flows need to be transmitted in time
to meet the deadlines, so as to guarantee user experience [35].
Motivated by this fact and the defects in transmission control
protocol (TCP), many frameworks are designed to guarantee
predictable communication time [36]. Therefore, minimizing
completion time and meeting deadlines become the main
optimization objectives.

Moreover, the data transmission can be categorised into
different granularities (e.g., packet, flow, coflow, task and
job). By exploiting the traffic patterns of big data jobs,
Chowdhury and Stoica [37] proposed an abstraction of coflow
which represents a collection of semantic-related flows to con-
vey requirements of job-specific communications. A coflow
is defined as a set of flows associated with the same com-
puting stage, e.g., the shuffling stage in MapReduce jobs. A
coflow completes only when the transmission of all associ-
ated flows finish. In other words, the completion time of a
coflow is determined by the slowest flow. Coflow has been

extensively studied with different objectives under various sce-
narios [38]–[44]. Note that minimizing completion time and
meeting deadlines can be formulated as the problem of mini-
mizing the corresponding coflow completion time (CCT) [37].
However, Appuswamy et al. [45] proposed a task-aware
mechanism, arguing that tasks are the most crucial objective
in scheduling, while coflow-aware algorithms allow applica-
tions to expose their semantics to network layer. To the length
of flows, the few but long flows generate most traffic in
DCNs [33], [46], [47]. This phenomenon is called the heavy-
tailed distribution [48]. Users’ feedback tasks associated with
the Partition/Aggregation operations create short flows, which
are in size of few kilobytes. Long flows are in megabyte scales,
generated from information storage or maintenance [49]. In
addition to flow length, the output size, input size and number
of tasks in production also follow the heavy-tailed distribu-
tion [38]. We observe that the Shortest-Flow-First (SFF) is a
provable optimized algorithm in such distribution. On the con-
trary, light-tailed distribution means that flows are nearly in
the same size. In this case, the First-In-First-Out (FIFO) out-
performs other algorithms. Therefore, making the algorithms
adapted to both heavy-tailed and light-tailed distributions is
reasonable [49].

To implement these algorithms, most schedulers require
complete prior knowledge in terms of flow size, flow number
and arrival time. Unfortunately, these characteristics cannot be
predictable in many cases, such as pipelining, speculative exe-
cutions and task failures [50]. Thus, scheduling without prior
knowledge is proposed [39]. Note that multi-stage jobs transfer
data between successive computation stages using pipelin-
ing [16], [39], [51], [52] and data from a single stage can
be divided into multiple waves [39], [53]. Moreover, to fault
tolerance and scalability, redundant flows can be generated
by task failures and speculations [15], [16], [39], [50]. We
also summarize the control schemes, which are one of the
most significant coordination principles of algorithm design.
Some frameworks [45] choose decentralized schedulers to
avoid the problems such as scalability and fault tolerance.
As allocating resources and offering Internet services are the
goals of distributed systems [5], the decentralized design can
provide absorbing scale and available capabilities, while a
centralized design has a restriction on the throughput and avail-
ability. However, many systems [42], [54]–[56] still choose
centralized framework due to the superiority of earning prior
knowledge (e.g., flow size and arrival time).

As shown in Fig. 1, we classify existing frameworks accord-
ing to the objective entities (e.g., disk, network, straggler) and
compare different optimization aspects (e.g., resource allo-
cation, scheduling mechanisms, utilization). In switch-level,
we exhibit cluster frameworks in terms of packet and router.
Meanwhile, the optimizations based on cloud and virtualiza-
tion are subject to application-level patterns. Moreover, the
network-level strategies mostly focus on designing a suitable
coordination principle (e.g., control scheme, granularity, prior
knowledge) and improving communication metrics (e.g., CCT
and deadlines).

This paper takes the first step to survey the cluster frame-
works and scheduling strategies in DCNs. Covering the

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3562 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

Fig. 1. The classification of different cluster frameworks for efficient scheduling.

absence of researches, we summarize the contributions of our
work as follows:

• We provide a detailed discussion of recent achievements
in algorithms. Moreover, by providing a review and
giving a comparison in different metrics, we straighten
out the development course of existing frameworks.

• We use coordination principles (e.g., data distribution,
prior knowledge and control scheme) for scheduling strat-
egy analysis to help readers understand the research
progress of cluster frameworks.

• We summarize the patterns of cluster frameworks and
illuminate the state-of-the-art assistive technologies for
them.

The rest of our paper is organized as follows. We introduce
the background in Section II. An architectural overview of
coordination principle is given in Section III. Then, Section IV
compares different cluster frameworks and we analyse the
metrics for performance evaluation in Section V. Moreover,
some desirable properties in system designs are demonstrated
in Section VI. Finally, we discuss the open issues and give the
summary in Section VII.

II. BACKGROUND

Computer systems are undergoing a revolution in the recent
decades, from the single machine architecture to distributed
cluster frameworks. The development of powerful micropro-
cessors (e.g., CPU and GPU) and invention of high-speed
networks promote this process forward. A distributed clus-
ter framework is a collection of independent computers that
works as a single coherent system. To design an applicable
cluster framework, various important goals should be met,
such as accessibility, transparency, scalability, consistency,
reliability, and fault tolerance, etc. Exploiting the parallelism
in big data applications for sequential programs has a long
history. Many cluster frameworks are developed to handle
these applications [15]–[17], [57]. As shown in Fig. 2, we
summarize existing frameworks into three typical paradigms:
(1) MapReduce [15] is a widely-used model in distributed

systems, making full use of both network and disk resources.
(2) Meanwhile, Dryad [16] proposed by Microsoft is an alter-
native for efficiently processing data-parallel applications in
a coarse-grained scheme. (3) Subliming the design principle
in MapReduce, Spark [17] provides a good performance
in iteration-intensive operations (e.g., logistic regression) by
using resilient distributed dataset (RDD) and guarantees the
fault tolerance with the abstraction called lineage. To better
understand the research progress in this area, we will provide
more details about these frameworks.

A. MapReduce and Hadoop

MapReduce [15] is a model for tackling data-parallel
applications and designing distributed systems. As shown in
Fig. 2(a), the user-specified mappers generate the key/value-
based pairs from large amounts of raw data. Then, the
MapReduce library combines the same key and shuffles
the intermediate data via network transmission. Finally,
the reducers aggregate the data from last step and output
the results. MapReduce is widely used for system design, the
renowned Hadoop [57], [58] is an efficient implementation of
MapReduce, using re-execution for fault tolerance and parallel
operations.

B. Dryad

Dryad [16] is a distributed execution engine, processing
data-parallel applications in a coarse-grained scheme. Similar
to Condor [59], Dryad is an example in a distributed setting.
The derivation of Dryad is inspired by graphics processing
units (GPUs) [60], [61], Google file system (GFS) [15], [62]
and parallel databases [63]. As shown in Fig. 2 (b), Dryad uses
vertices (the circles) and channels (the arrows) to create several
data flow graphs for job segmentation. The operations of mes-
sage transmission guarantee a property that the resulting graph
is acyclic. A basic definition of the graph can be described
as G = {VG ,EG , IG ,OG}, where G represents the entire
graph, containing a collection of vertices VG and directed
edges EG . Meanwhile, IG and OG represent the input and

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3563

Fig. 2. (a) MapReduce works with two reducers (yellow circles) and three mappers (green circle). Note that the shuffle stage is highlighted via blue
arrows; (b) Dryad uses vertices (circles) and channels (arrows) to form a data flow graph for job segmentation; (c) Spark provides a shared memory to tackle
applications in a master-worker scheme. To accelerate job executions, workers read data blocks from a distributed file system and store intermediate results
in memory.

output of the vertices, respectively. Note that data are trans-
mitted through the channels, each of which is constituted with
two vertices. Without thread creation and lock mechanism,
Dryad can manage the available resources more efficiently.

C. Spark and RDD

Spark is a system which accelerates interactive operations
and uses a general-purpose programming language for in-
memory data mining on clusters [64]. Note that Scala is
implemented as a language-integrated programming interface
in Spark, similar to DryadLINQ [65]. To perfect the aspect
of distribution and fault tolerance, Spark chooses coarse-
grained updates, instead of fine-grained transformations [17].
As shown in Fig. 2 (c), a shared memory with restricted form
can decrease application execution overheads (e.g., data repli-
cation, disk I/O) caused by writing the reuse data in an external
system. In the history of applications reuse, HaLoop [66] is
a system which offers an iterative interface in MapReduce.
Pregel [67] keeps intermediate data in memory during iterative
graph computation process. The core module in Spark is
the RDD, which is a common reuse abstraction. Users can
store intermediate results in memory explicitly, optimizing
data placement by having charge of result partition. As shown
in Fig. 3, RDD appropriately chooses coarse-grained transfor-
mation interfaces, allowing a system to provide fault tolerance
with lineage.

Online services often have a partition part that requests
are partitioned amongst workers and a aggregate part which
generates response [68]. As a common feature, flows past
through a sequence of stages to generate the final result. As
shown in Fig. 4, there are six communication patterns: (a) sin-
gle flow is the simplest pattern, where data is transmitted
from a source to a destination in a single link, (b) paral-
lel flows is a collection of independent single flows, each of
which is transmitted at the same time, (c) broadcast is also
a collection of flows, which follows the one-to-many scheme,
(d) aggregation is an opposite pattern of broadcast, following
the many-to-one scheme, (e) shuffle is a common commu-
nication patterns in MapReduce, where each mapper needs
to communicate with all of the reducers, and (f) all-to-all
is a full-connected network, where each node communicates

Fig. 3. To tackle a job, Spark launches a number of RDDs to divide the
whole procedure into two stages: stage0 and stage1. Outputs are aggregated
as a text file with the operations of partition, map, shuffle and reduce.

with other nodes. To express all of these patterns, the abstrac-
tion of coflow is proposed [37]. Based on it, Varys [38] and
Aalo [39] are implemented for efficient coflow scheduling.
Moreover, the CODA [40] provides an automatic coflow iden-
tification method to make previous coflow schedulers become
applicable in real productions. Regardless of the different mod-
els of diverse applications, common flows can be grouped into
a few common patterns.

III. COORDINATION PRINCIPLES

The purpose of the cluster frameworks is to offer commu-
nication services for users and coordinate resource allocation
efficiently [69]–[71]. Thus, it is necessary to carefully design
cluster frameworks according to a number of coordination
principles, which can be classified into four main categories:
control scheme, distribution, prior knowledge and objective
granularity.

A. Control Schemes

A crucial problem that should be considered first is to
determine the control scheme, which contains two types: the
centralized scheme and the decentralized scheme. In the archi-
tecture design of cluster frameworks, researchers have not

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3564 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

Fig. 4. Common patterns in data-intensive applications.

TABLE I
SUMMARY OF CENTRALIZED CLUSTER FRAMEWORKS

reached a consensus on the selection of control scheme. Both
two schemes own their superiority and shortage.

1) The Centralized Scheme: We observe that the centralized
scheme is widely employed by a central scheduler to control all
the data (e.g., flows, coflows, tasks, and jobs) in the DCNs. This
scheme usually achieves an acceptable performance because
they can globally coordinate the communications. A number
of cluster frameworks are designed in the centralized scheme.
To show significant features of this scheme, we compare a
number of typical centralized frameworks in Table I.

Hedera [54] is designed in a centralized manner. The sched-
uler in Hedera can meet the requirements of fault tolerance
and scalability, using periodical updates to synchronize the
network communications. Hedera desires to dispatch flows to
the paths which are not conflicting. Specifically, it attempts
to send numerous flows in an uplink or a downlink with
accommodating the united bandwidth requirements. Thus,
Hedera can outperforms (39% better bisection bandwidth) the
Equal-Cost-Multi-Path (ECMP) scheme.

Orchestra [55] is also a centralized scheduler, implemented
for controlling the actions of both intra- and inter- transmis-
sion. In order to achieve this purpose, the system architecture
is designed in a multi-level controller manner. Each transfer
controller (TC) is able to select different transmission devices
according to the information about flow size and node status.

Meanwhile, Varys [38] claims that the FIFO strategy [5]
may miss the deadlines when small coflows are blocked by a
large one. However, the FIFO strategy is often used in decen-
tralized system architecture [5], [55]. From the above, Varys
presents a framework which combines Smallest-Effective-
Bottleneck-First (SEBF) heuristic with Minimum-Allocation-
for-Desired-Duration (MADD) algorithm. With these two
algorithms, the centralized architecture of Varys is robust and
the coflows can be efficiently scheduled.

Although the framework of Baraat is powerful in several
distributions, especially the light-tailed distribution, Aalo [38]
still argues that Baraat may not perform well in the conditions
without global coordination. Therefore, Aalo uses a central-
controlled architecture, which has two control manners: the
global control with chronic coordination and the local control
with temporary prioritization.

CODA [40] is also a centralized cluster framework,
inspired by a number of successful implementa-
tions [15], [38], [50], [62], [73]. It employs a central master
to control numerous devices in a master-agent structure. The
master node plays a major role in coflow recognition and
scheduling. To an agent node on each end-point, the flow-level
information is collected for assisting the master to wisely
make scheduling strategies. In order to handle numerous agent
nodes, the central master should be designed to meet two
desirable properties: the scalability and the fault tolerance.

Adia [42] considers that the centralized scheme is neces-
sary because the controller needs to handle all the information
about coflows. Note that some coflow scheduling mechanisms
require all the knowledge [38], [72]. Similar to CODA [40],
coflow information on each end host is collected and trans-
ported to a central scheduler. Furthermore, Adia concentrates
on the link utility and reports the status on each machine
to the master node, i.e., the controller. Meanwhile, the col-
lector receives all relevant information from the daemons of
senders. Thus, the prior knowledge of each coflow can be
obtained in advance. From the above, the controller needs to
make two decisions: (1) the rate for flow transmission and the
host-based rate for each daemon. However, the fine-grained
scheduling may incur side-effects on system scalability. In
order to conquer this challenge, Adia delivers the fine-grained
workloads to each daemon for alleviating the huge pressure
on the central controller. Therefore, the controller just needs

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3565

to handle overall link status and collect prior knowledge of
coflows. Meanwhile, each daemon can decide the flow rate
by querying the controller regularly. Moreover, coflows are in
the heavy-tailed distribution [38] and the majority of traffic
is only generated by a handful of coflows. Thus, Adia claims
that concentrating on the large coflows can further promote
the efficiency of centralized frameworks.

Furthermore, Chronos [56] also chooses the centralized
scheme to collect the prior knowledge (e.g., coflow size and
arrival time). Chronos only schedules a coflow when all data
belonging to it are ready for transmission. If Chronos cannot
obtain enough coflow information, the coflow-level scheduling
will be degraded to the flow-level mode.

2) The Decentralized Scheme: Frameworks designed in the
decentralized scheme can leverage network protocols to avoid
the huge overheads in the centralized scheme. Moreover, the
decentralized scheme makes frameworks more robust in fault
tolerance and scalability. To have a better understand on this
scheme, we illustrate several typical decentralized frameworks
in Table II.

Sparrow [74] is implemented in a decentralized manner to
provide a near-optimal performance. Ousterhout et al. [74]
claimed that a decentralized design can provide an absorbing
capability in job management, while a centralized design has
a limitation on the throughput and scalability. To achieve good
performance, Sparrow follows two basic policies: (1) A con-
straint exists where a per-job or a per-task is launched. (2) In
terms of resource allocation, strict priorities and Weighted-
Fair-Sharing are enabled when the resource requirements
exceed the cluster capacity.

pFabric [75] is another decentralized scheduler, which owns
a near-optimal performance in job scheduling and flow trans-
mission. Meanwhile, Baraat [5] also employs a decentralized
task-aware scheduler to prevent a number of problems (e.g.,
scalability and fault tolerance). No matter when the flows
begin and in which portion to travel, each task owns an
exclusive priority to classify the flows in it. In this way, all
the flows belonging to a task can be aggregated as a group
for scheduling together, regardless of time and space char-
acteristics. Thus, Baraat outperforms both pFabric [75] and
Orchestra [55] because heavy tasks can be efficiently handled
in a multiplexed-level scheme. Moreover, Baraat improves the
scheduling performance in various workloads, reducing both
total and tail completion time.

B. Distribution

Two major distributions exist in data-intensive applications:
the light-tailed distribution and the heavy-tailed distribution.
Most jobs follow the heavy-tailed distribution in their out-
put size, input size and number of tasks [38]. As shown
in Fig. 5, a handful of large flows generate the majority of
the traffic data in heavy-tailed distribution. On the contrary,
flow sizes are fairly homogeneous in light-tailed distribu-
tion. In existing researches, scheduling disciplines which work
well in light-tailed (exponential) distribution distributions may
not perform well in heavy-tailed (power) distribution, and
vice-versa [49]. In other words, it is hard to implement a

TABLE II
SUMMARY OF DECENTRALIZED CLUSTER FRAMEWORKS

Fig. 5. According to the flow distribution, 89.49% flows are smaller than
10 GB and most flows are in length of [10MB, 10GB]. Meanwhile, more than
93.03% traffic bytes are created by the flows larger than 10 GB.

framework that can perform perfectly in both two distri-
butions. Thus, analysing the distribution in terms of flow,
coflow, task, job and applications is a crucial issue in algo-
rithm design. We observe that First-Come-First-Served (FCFS)
scheduling performs well in minimizing JCT when the job
size distribution is light-tailed [6]. Meanwhile, if the job
size follows the heavy-tailed distribution, Shortest-Remaining-
Processing-Time (SRPT) [49], Processor Sharing (PS) [49],
and many other policies (e.g., all SMART policies [48]) have
a good performance. In realistic deployment with distribu-
tion consideration, Chowdhury and Stoica [39] proposed the
Coflow-Aware Least-Attained Service (CLAS) algorithm that
straightforwardly leads to fine-grained sharing for light-tailed
distribution. Note that the fine-grained sharing is suboptimal in
terms of minimizing average CCT [5], [6], [77]. Fortunately,
Chowdhury and Stoica addressed this dilemma and proposed
a solution by discretizing coflow priorities.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3566 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

C. Prior Knowledge

In existing scheduling mechanisms, it is common
that the network condition and job characteristics are
unknown in advance. Fortunately, some state-of-the-art
researches [37], [78], [79] claim that prior knowledge can be
obtained using prediction techniques.

Orchestra [55] employs an algorithm called Weighted-
Shuffle-Scheduling (WSS). WSS assigns the weight of each
flow by globally coordinating task information. Prior knowl-
edge about data size and node number are used to help transfer
controller (TC) choose a most feasible transmission mecha-
nism. The scheduler in Varys [38] also requires complete prior
knowledge, including flow distribution, flow size and cluster
status. Note that flows can be aggregated into coflows when
the centralized scheduler have full knowledge of all network
traffic. Thanks to prior knowledge, Cho et al. [80] used credit
packets to alleviate network congestion during transmission.
In this scheme, a sender can safely transfer data and avoid
congestion and reacting.

From the above, the consideration of prior knowledge is a
crucial property in scheduling algorithm design. Actually, most
of schedulers [5], [6], [38], [41], [43], [55], [81] are designed
based on the preliminary that the prior knowledge can be gath-
ered in advance. Prior knowledge contains the flow informa-
tion, such as flow arrival time, size, numbers and length [37],
[38]. Meanwhile, the status of cluster resources, including
available bandwidth and computational capacity, also domi-
nates prior knowledge. It is relatively readily to design an
efficient scheduler when prior knowledge can be collected.
However, it is not always suitable to know the prior knowl-
edge. In many scenarios, flow and coflow characteristics are
hard to gather. As the pipelining techniques are widely used
to accelerate multi-stage jobs [16], [17], [50], the quickly-
transferred data makes it unreasonable to collect flow char-
acteristics. Moreover, the multi-waves [53] prevent the flows
within a coflow starting together, making it hard to aggregate
coflows. Finally, stragglers in task failures and speculative exe-
cution [16], [50], [82]–[85] also hamper the prior knowledge
collection. The existence of re-started flows [15], [16], [50]
makes the complete flow information cannot be obtained
before completion. Thus, schedulers based on prior knowl-
edge may be inapplicable in real use cases. Fortunately, some
efforts have bee paid to conquer this dilemma. FIFO and
its variants [5], [55] can be adopted into schedulers to con-
quer this problem, requiring no prior knowledge. For example,
Baraat [5] employs FIFO for task scheduling, so as to change
multiplexing layers to avoid head-of-line blocking. Moreover,
based on updating priority class dynamically, Aalo [39] can
also schedule coflows without any prior knowledge.

D. Objective Granularity

Data-intensive applications operated via cluster frameworks
have multiple requirements [37]. Different with the propos-
als concentrate on the bandwidth [33], [86]–[88], Orchestra
captures the job-level semantics and improves the transfer-
level scheduling of tasks, each of which consists of a number

of flows from a stage to the next. Capturing communica-
tion patterns is important to further promote the optimization
of data-parallel jobs [5], [38], [54], [55], [89]. However,
researchers maily focus on network-level metrics, overlook-
ing application-level requirements [54], [75], [90], [91].
Fortunately, Chowdhury and Stoica [37] proposed the abstrac-
tion of coflow, which is a collection of semantic-related
flows, catching communication patterns between two group
of machines. By introducing coflow, the underlying attributes
in both network and application layer can be detected.
Moreover, researchers can further improve the performance of
job scheduling in DCNs with the perspective of coflow-level
optimization.

Meanwhile, various of tasks (or jobs) are executed in DCNs,
including uploading user social news-feed and answering a
search query. These tasks contain numerous components, each
of which owns a deadline about task completion, making
scheduling base on task-aware fashion popular. As shown
in Fig. 6, the all-or-nothing property [53] has a significant
influence on task-aware scheduling. Tasks are operated in par-
allel, only when all the components are optimized can tasks
be accelerated. In realistic production, MapReduce [15] and
BSP [67] also evidence this phenomenon, i.e., a stage cannot
start until all the data from the previous stage is received.

IV. CLUSTER FRAMEWORKS

In this section, we will give a detailed discussion on
existing cluster frameworks, comparing them in terms of
scheduling strategies, online algorithms, network protocols,
memory caching, resource allocation and straggler phe-
nomenon. Moreover, the assistive technologies used for pro-
moting the system performance are also included. We observe
that scheduling strategy is the kernel in both algorithm design
and framework implementation. More precisely, different
strategies have their own superiority and shortage according
to coordination principles.

A. Scheduling Strategies

In order to have a basic understanding on different algo-
rithms and strategies implemented in these frameworks, we
show five sequence diagrams in Fig. 7, including First-In
First-Out (FIFO) [5], [55], Per-Flow Fairness (PFF) [55],
Per-Flow Prioritization (PFP) [6], [75], Weighted Shuffle
Scheduling (WSS) [55] and Smallest-Effective-Bottleneck-
First (SEBF) [38]. Note that FIFO may lead to head-of-line
blocking, showing randomness of average FCT and CCT in
a macro view. Meanwhile, PFF guarantees the max-min fair-
ness principle among flows, with average CCT of 2.75 time
units. Also, PFP — the optimal scheduling algorithm for min-
imizing average FCT in a single link may not perform well
in terms of minimizing average CCT. Moreover, WSS reduces
the average FCT and CCT compared with PFF. Finally, SEBF
is an effective coflow scheduling algorithm, with average CCT
of 2.5 time units. This subsection can help readers follow the
latest research progress in scheduling algorithm design and
cluster framework implementation.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3567

Fig. 6. The all-or-nothing property: (a) we show an example of a coflow which is constituted with three flows; (b) In order to reduce CCT, three flows
should be optimized together; (c) Although the average FCT is reduced, the average CCT still cannot be optimized; (d) Under the soft-real-time constraints,
all flows can finish before their deadlines; (e) The delay of one flow may make the whole coflow miss its deadline.

Fig. 7. Two coflows (coflow1 in dark/black and coflow2 in light/gray) are prepared for schduling. Note that each port can transfer one unit of data in one
time unit. Average FCT and CCT (in time units) achieved by different mechanisms: (a) 2.375 and 2.75 by FIFO which allocates bandwidth to the flow arriving
first. (b) 2.125 and 2.75 by per-flow fairness (PFP) which shares bandwidth fairly to each flow; (c) 1.75 and 2.75 by per-flow prioritization (PFF) which
assign a higher priority to a short flow; (d) 2.75 and 3 by WSS which allocates bandwidth to flows based on their weights; and (e) 2 and 2.5 by SEBF which
optimizes coflow-level scheduling.

There are three general aspects for summarizing improve-
ments in existing frameworks.

• Breaking the bottleneck of network is impor-
tant. Amounts of efforts have been paid to
improve network conditions, including scheduling
semantic-related flows, improving link utilization
and aggregating data for network traffic reduction
[37], [38], [54], [55], [92]–[108].

• Breaking the limitation of disk is also a useful aspect,
including improving disk utilization [109] and employing
cache for data storage [50], [53], [110], [111].

• Alleviating the impacts of stragglers is a novel issue,
because stragglers will delay completion time severely.
Moreover, the generation cause of stragglers is still not
fully known [82]–[84], [89], [112]–[120]. Fortunately,
it is reasonable to employ task speculation and load
balancing to solve the staggler phnomenon [121].

Adia [42] tries to maximize the utility of available links
while not impacting coflow-level performance. To acquire a
high link utility, Adia needs to have a coordination of coupled
bandwidth between uplinks and downlinks. Adia employs a
layer-based scheduling mechanism to control both inter- and
intra- link scheduling. To reduce the average CCT, uplinks
are treated as a unity and inter-links are scheduled based on
their priority in network layer. Adia focuses on the coflows
which are all in uplinks. Therefore, it executes the intra-link
scheduling in uplinks. The priority of scheduling mechanism
is based on the transmission speed of coflows.

Meanwhile, Corral [122] has an offline planner which
decides the assemble of racks. This planer controls which task
should be operated and when a coflow should be transmitted
according to job features (e.g., input data, CPU utilization and

memory requirements). However, the planner cannot make a
distinct determination on job execution. Thus, outputs should
be treated as a guideline on placing data.

Orchestra [55] improves transmission performance by
allowing scheduling policies to be implemented in trans-
fer layer and capturing communication patterns. Previous
researches mainly focus on decreasing JCT [89], [123], [124]
in interactive workloads [123], [124] and optimizing resource
utilization. However, Orchestra is implemented via arranging
network resource. In order to follow network-level distribu-
tions, Chowdhury et al. [55] analysed application traces which
are collected from Facebook, claiming that transferring data
in network activity constitutes the majority of JCT. Traditional
frameworks [33], [54], [86]–[88] for managing activities and
optimizing network utility cannot take semantic-related flows
into consideration, due to the lack of job-level semantics.
Orchestra realizes the importance of job-level semantics and
optimizes the transfers between intra-tasks. Each transfer
consists of a number of flows from a stage to the next.
Orchestra coordinates the data movement with a number of
TCs, each of which guides the transfer continuously and
updates the network status of both sources and destinations.
Thus, global coordination is the key idea in Orchestra for
coordinating the data movements in both inter- and intra-
transfers. Orchestra breaks the limitation of optimizing the
performance in data transfers using a global management
architecture, i.e., inter-transfer controller (ITC), which can
determine scheduling policies and manage numerous TCs to
select an appropriate mechanism. To reduce the average time
consumption in multi-transfer workloads, Orchestra employs
a FIFO-based heuristic, using WSS for allocating bandwidth
according to weight proportions. To conquer the challenges

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3568 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

of both managing hardwares and capturing network topol-
ogy, Orchestra is implemented in application layer, similar
to a number of previous frameworks [17], [57]. Therefore,
Orchestra can be deployed without modifications on routers
or switches. Note that Chowdhury et al. [55] argued that the
application-level coordination still has an improvement restric-
tion in networks. Thus, it is natural to adopt a sweet-spot to
make a tradeoff between utility and scalability. Based on above
architecture, Orchestra is a transfer-level optimal schedul-
ing framework, which efficiently dispatches network resource
for minimizing task communication time and guaranteeing
predictable deadlines.

Furthermore, observing that previous scheduling
approaches are often restricted by limited network resources.
Swallow [125] leverages the superiority of coflow-level
coordination and employs a fine-grained scheduling manner
to alleviate the shortage of bandwidth. Swallow jointly
considers traffic data compression and coflow scheduling,
i.e., conducting coflow compression to accelerate the entire
scheduling progress. The proposed scheduling heuristic
Fastest-Volume-Disposal-First in Swallow can efficiently
minimizes FCT, CCT and JCT, while providing work
conservation and starvation freedom.

B. Online Algorithms and Network Protocols

Online applications with service level agreements (SLAs)
in their operations [68] often have requirements of work-
ers and aggregators. Reducing latency is a crucial problem
in interactive web services [126]. The latency of user inter-
actions reflects the time expires, i.e., a response must be
aggregated before its deadline. Note that network bandwidth
will be wasted if the response quality is impacted (e.g., a flow
misses the deadline). Thus, all stages belonging to an online
application should meet their deadlines. Due to the lack of
consideration of latency, existing technologies (e.g., conges-
tion control, flow scheduling, FIFO queuing) cannot perfectly
maximize network throughput because the fairness in network-
level metrics is missing. To design a efficient framework, two
properties should be considered:

• As deadlines are associated with each flow, not network
packets, flow-level optimization should be concerned.

• Requirements of meeting deadlines are significantly cru-
cial in various applications. Therefore, responses should
be operated in time.

Meanwhile, in the implementation of D3 [127], flow
deadlines are in an exponential (heavy-tailed) distribu-
tion. Existing frameworks may miss significant fraction of
flow deadlines if they use the measurements [128] based
on FCT. Wilson et al. [127] observed that flow proper-
ties in interactive applications can be predicted in many
cases. Hence, prior knowledge can be collected in advance.
Wilson et al. [127] also proposed an Earliest-Deadline-First
(EDF) heuristic [129], which is the first deadline-aware solu-
tion in scheduling. The implementation of EDF employs
priority class based on per-pop packet deadlines and allocates
all the bandwidth to a flow with the earliest deadline. EDF
is an optimal scheduling which meets flow deadlines. Thus,

deadline-aware solutions outperform the counterparts based
on fair sharing, in terms of flow distribution and deadlines.
Note that D3 [127] is a deadline-driven delivery proactive
protocol, using an explicit rate to control network conges-
tion [130], [131]. The allocation rate from a router to a destina-
tion is based on the information of flow initiation time. Routers
allocate bandwidth greedily based on First-Come-First-Served
(FCFS) strategy. Instead of employing work reservation, D3

assigns rate in a lease scheme to avoid side effects (e.g.,
router failure) in greedy algorithms. Unfortunately, greedy
allocation in D3 may also impact job performance. Thus,
preemptive Deadline-Aware-Data-Center-TCP (D2TCP) [132]
is proposed to solve this problem. Furthermore, to handle all
the requests of line rate, D3 needs to switch numerous chips
while avoiding high costs in hardwares.

Moreover, as Online-Data-Intensive (OLDI) applications
are widely executed under soft-real-time constraints, sat-
isfying requirements in these applications is also signifi-
cant. Therefore, D2TCP also needs to improve performance
of burst-processes and makes no change to hardwares
and protocols. To achieve this purpose, D2TCP imple-
ments a reactive bandwidth allocation, using a congestion
window with Explicit-Congestion-Notification (ECN) feed-
backs. More precisely, D2TCP modulates the window size
and adopts deadline-awareness based on Data-Center-TCP
(DCTCP) [128], leveraging the extent of congestion and dead-
line information. To have a better understand on this approach,
we will give some typical formulae to describe core technolo-
gies. First, given η to represent the fraction of sent bytes,
we have:

η = (1 − k) · η + k · F , (1)

where k , k ∈ [0, 1], is a constant weight and F is the fraction
of packets marked in the last window of one Round-Trip-Time
(RTT). A larger η indicates a higher level of congestion. Once
updated, the congestion window is adjusted as:

c = c · (1 − η/2). (2)

Therefore, D2TCP can meet OLDI deadlines, consider-
ing fan-in-burst-induced congestion. Moreover, it achieves a
higher bandwidth utility than D3. Alizadeh et al. [75] claimed
that D2TCP can estimate flow rates precisely for minimizing
FCT and ensuring network utilization. Moreover, collaborating
with the technology of RTT, a sender can calculate the fraction
of packets marked by ECN. The average fraction of ECN feed-
backs can be updated using Eq. (1). Similarly, D2TCP employs
exponential smoothing equation to estimate these packets. As a
reaction to congestion, a penalty function d can be defined as:

d = ηWC , (3)

where WC is the current flow weight. To increase the con-
gestion window size, a sender calculates the ratio θ of current
flow weight and the maximum flow weight. This ratio can be
defined as:

θ = WC /Wmax, (4)

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3569

where WC is a subset of WC ∈ [Wmin,Wmax]. Note that
Wmax and Wmin represent the maximum and minimum of
assignable weight, respectively.

Different from fair-sharing protocols [128], [130], [133],
which are mainly focused on minimizing FCT and meeting
deadlines, Hong et al. [6] proposed Preemptive-Distributed-
Quick (PDQ) where flows in high priority can be operated
first by pausing others. Thus, PDQ indicates minimizing
FCTs using preemptive flow scheduling. This flow schedul-
ing mechanism in PDQ employs an explicit rate control,
which is based on switches for assigning rates to individ-
ual flows. PDQ also uses an early termination to terminate
the flow when a flow cannot finish in time in following
cases:

• The flow has missed its deadline.
• The remaining time is not enough for flow transmission.
• The transmission operation cannot work smoothly during

the rest processing.
To make switches meet book-keeping requirements, each

flow must be terminated under control. Therefore, many
latency-sensitive flows which consume just one RTT may
suffer from the extra round-trip [33], [134]. Moreover, two
crucial factors should be considered in the implementation
of PDQ: (1) PDQ may lead to high latency due to the
centralized-control scheduler. To conquer this dilemma, PDQ
makes switches cooperatively gather flow workloads infor-
mation; (2) the scheduler may pause existing tasks for sup-
porting the distributed environments. Thus, PDQ preemptively
assigns bandwidth to critical flows in distributed scheduling
layer.

C. Memory Caching and Resource Allocation

As plenty of memory is deployed in data centers, in-
memory caching of inputs can be employed to accelerate job
processes [135], [136]. I/O-intensive phases which read raw
data and write parsed output are common in data-intensive
jobs. Ananthanarayanan et al. [53] proposed Pacman, a ser-
vice coordinating approach for accessing distributed caches,
using memory locality to store input data.

As a near-optimal transport, pFabric [75] implements the
kernel algorithm with flow-level scheduling and rate control.
By keeping queues empty, pFabric accepts ECN-based feed-
back and employs adaptive congestion control to reduce FCT.
Meanwhile, other frameworks [6], [127] determine explicit
transmission rates with detailed flow status and identify
the bottleneck to improve the utilization among switches.
Compared with these approaches, pFabric is more feasible
for implementation. When a new packet arrives, the switches
need to decide whether it can be accepted, because the
buffer capacity is small (e.g., dozens of kilobytes in per-
port evaluation). When the buffer is full, packets with lower
priority in buffer will be dropped. Across the entire fab-
ric, an approximately optimal scheduling algorithm containing
local and greedy strategy is employed. Thus, pFabric con-
ducts rate calculation in switches without any requirements of
flow information [134] to guarantee deadlines and minimize
average FCT.

Fig. 8. Discretized Coflow-Aware Least-Attained Service: consecutive
queues handle coflows with exponentially larger size. The priority of a queue
decreases from left to right. In each queue, cylinders represent the coflows
prepared for scheduling. Note that coflows are scheduled in a FIFO order.

Moreover, avoiding starvation is also a tough problem.
In existing solutions, FIFO-LM can dynamically change the
multiplexing level to make heavy tasks not block the small
ones arriving later. Focusing on task awareness, FIFO-LM
optimizes the bursty arrivals. Thus, a task only influences the
one arrives next. Meanwhile, Dogar et al. proposed Barrat,
a task-aware decentralized system, which assigns an unique
priority to all flows in a task. Moreover, Smart-Priority-Class
(SPC) technology is employed in Barrat, leveraging both rate
control and work conservation.

Furthermore, Rapier [79] formulates a joint optimization
model, which combines routing and scheduling to minimize
CCT. Zhao et al. [79] proposed a heuristic which focuses on
the relaxation of this non-linear programming model. Inspired
by Orchestra [55] and Varys [38], Rapier works in a centralized
manner. Information of network resources and coflow status
are collected to estimate time consumption. Note that Rapier
uses Equal-Cost-Multi-Path (ECMP) to send small coflows.
The remaining bandwidth is assigned with work conservation.
Thus, coflow scheduling is controlled by an algorithm called
Minimum-Remaining-Time-First (MRTF) [6], [38] when a
coflow arrives or finishes. All unfinished coflows are managed
in a preemptive scheme. In this case, a small collow can pause
other coflows and acquire bandwidth first. Zhao et al. [79]
claimed that Rapier can tackle various requirements, especially
for latency-sensitive applications.

Chowdhury and Stoica [37] proposed the abstraction of
coflow, each of which involves multiple parallel flows. They
implement SEBF heuristic that is based on network bottleneck
and greedily schedules coflows. Meanwhile, MADD algorithm
is designed to allocate flow rates. MADD slows down other
flows to match the longest one in a same coflow. Considering
scheduling coflows without prior knowledge, Chowdhury and
Stoica [39] proposed Aalo, which uses multiplexing schedul-
ing strategy with FIFO in each queue. As shown in Fig. 8,
the priority of each coflow will decrease when network traf-
fic of sent bytes exceeds predefined thresholds. Furthermore,
Zhang et al. [40] combined the machine learning techniques
in CODA without modifying any applications manually. In
CODA, the identification of a coflow can be operated via dis-
tance metric learning. This contribution significantly promotes
the developments of coflow-aware scheduling.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3570 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

D. Straggler Phenomenon

1) Definition: A straggler is defined as a task which has
particularly long completion time comparing with normal
ones [117], [137]–[139]. Stragglers will significantly increase
time consumption in a stage because this stage can only com-
plete when all tasks finished. The straggler phenomenon occurs
when there is an unexpected situation during job processing,
such as a slow task [140] or a slow worker [85]. In previous
work, stragglers are considered as a crucial bottleneck. The
processing speed will be slow when stragglers exist: they delay
47% completion time in Hadoop and 29% completion time in
Dryad [16]. The data skew may incur stragglers [141], but it
cannot explain all the causes. To alleviate the impact of strag-
glers, many strategies try to schedule a speculative copy when
a task is delayed.

Thus, analysing the causes of stragglers is meaningful
because it can provide ideas for conquering this problem.
Existing achievements describing attributes and potential
causes of stragglers can be summarized into three aspects:
(1) Stragglers are impacted by output skew instead of input
data in terms of progress rate. (2) Stragglers can be detected
when the first task of one stage belongs to a specific appli-
cation. For example, the just-in-time compilation of Java may
cause straggler, because the code is optimized during Java
running time but may be performed beyond thresholds [142].
(3) Hardware malfunction and bad configurations are also
potential causes of straggler [112], [112]. For example, JVM
garbage [143] collection and I/O operations (e.g., disk and
network) may incur staggers.

2) Speculation Technology: Many strategies employ task
speculation [140], [144]–[148] in order to alleviate the impact
of straggler. Previous works show that speculation makes up
a quarter of entire tasks. As producing speculative copies of
tasks may affect resource usage, speculation needs to be care-
fully adopted. If speculation is too aggressive, it will have a
serious side effect on other jobs. Fortunately, some specula-
tion strategies are independent of job scheduling in both design
and operation. In these cases, schedulers will dispatch dupli-
cate speculative tasks in available slots as far as possible [15],
[82], [89], [149].

Hopper [140] is also a system which mitigates the impact
of stragglers well. It can be implemented in both central-
ized and decentralized scheme. In centralized scheme, Hopper
processes jobs in an ascending order of their virtual sizes, giv-
ing each job a desired allocation until all slots are exhausted.
Meanwhile, in decentralized scheme, a Sparrow-based [74]
architecture which consists multiple schedulers and workers
is employed. Fig. 9 displays the advantages of Hopper in
terms of making coordinated decision. By using speculation
technology, Hopper adopts an idle slot for re-execution.

E. Assistive Technologies

1) Congestion and Convergence: To minimize FCT in TCP,
Hong et al. [6] proposed PDQ to make a flow with higher
priority run faster by pausing other flows with lower priority.
In many cases, multiplexing strategy can avoid head-of-line

Fig. 9. Timing diagrams of two jobs in Hopper: job A (dark/black) and
job B (light/gray) are operated in different slots. Two stragglers (red) are re-
launched. Tasks with “+” suffix (B2+ and A3+) are the copies of speculation.

blocking. For example, Baraat [140] schedules tasks in a FIFO
order, dynamically changing the priority level in multiplexing.

To avoid missing deadlines, a slow task will not be
waited by its parent task. A network protocol which allows
tighter network budgets can give more computation time to
produce higher-quality responses. Note that a fan-in burst
may appear when a children node responds to a parent
node [127], [128], [150]. A burst where varied flows are shar-
ing network may lead to TCP retransmission and congestive
packet drops. Alizadeh et al. [128] claimed that the fan-in
bursts are common in OLDI applications. Solutions for alle-
viating the burst can be summarized into two approaches:
(1) The first approach is to absorb the burst with more cost
with over-provision network bandwidth; (2) The second one is
to increase the number of machines to add network time bud-
get, but leaving less time for computation. Note that these two
approaches may incur a worse situation due to the increment
of fan-in degree.

To alleviate side effects of fan-in bursts, technologies
of congestion control are widely employed. As a typi-
cal congestion control algorithm, the Rate-Control-Protocol
(RCP) [130], [151] can be described in two phases: (1) In
measurement phase, RCP must balance the noise of conges-
tion signals via receiving multiplexing packets; (2) In reaction
phase, RCP moves towards the optimal direction using gra-
dient descent algorithm to tune received signals. In order to
accelerate above procedures, an iteration step will be set in
a large scale. Moreover, perpetual overshooting and system
instability should also be considered, i.e., making a trade off
between efficiency and robustness. In terms of working mech-
anism, RCP assigns a rate R (τ) to every concurrent flow and
can be defined as:

R(τ) = R(τ − p0) +

[
η(C − ζ(τ)) − γ

S(τ)
p0

]

∧
N (τ)

, (5)

where p0 is average RTT of all packets, R(τ−p0) is previously
updated rate, C is link capacity, ζ(τ) is the input traffic rate
during last update interval, S (τ) is instantaneous queue size,

and
∧
N (τ) is the estimated number of ongoing flows, calcu-

lated as
∧
N (τ) = C

R(τ−p0)
. Note that system stability and

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3571

performance parameters may influence the convergence of
R(τ), where 0 < η and γ < 1. Note that C − ζ(τ) represents
available bandwidth and γ

S(τ)
p0

is the remaining bandwidth in
a queue.

Therefore, we can draw a conclusion that link speed, i.e.,
RTT may have a significant influence of job performance.
Fortunately, over the past decade, the link speed have been
rapidly improved. Network transfers can be completed with
fewer RTTs. Hence, solving end-to-end latency and queuing
delay have become two dominant issues. Allocating proper
rates to each flow quickly is also significant. Network-level
metrics (e.g., FCT) are affected by the convergence time of
congestion control. Moreover, with higher link rates, most
flows can be transmitted with fewer RTTs. If a flow con-
sumes a long time due to congestion, other flows may also
spend more time in transmission. As existing protocols (e.g.,
DCTCP [128], RCP [130], XCP [131]) iteratively react to con-
gestion signals, the link speed may significantly impact flow
performance.

However, detecting congestion signals requires a huge time
consumption. Traditional congestion control algorithms con-
verge slowly because routers have to calculate a current rate
to estimate the flow-path before sending the feedback infor-
mation. As flows on different paths share congested links
interdependently, the final converged rate cannot be obtained
precisely from routers in advance. Hence, routers have to
update the rate and react to latest information which is pas-
sively gained. Furthermore, the robustness and scalability in
algorithm design should also be taken into consideration by
adjusting rates cautiously.

To implement congestion control, introducing proactive
algorithms is a natural idea. Most proactive algorithms handle
flow transmission rate according to global information because
a global control requires fewer iterations. Typically, algorithms
based on Max-Min fairness allocation are suitable to a given
set of flows and links. These algorithms will converge if all
flows are transmitted with a fair-sharing rate. In proactive algo-
rithms, two properties are contained in congestion control:
(1) With the congestion signals (e.g., queues, traffic volume),
rates can be calculated independently. (2) There is no need to
employ gradual adjustment for algorithm convergence; Based
on active flows, rates can be calculated explicitly. Thus, proac-
tive algorithms converges quickly by avoiding measurement
of gradient descent phases. To flows with small RTTs, some
challenges (e.g., flow busty, small RTTs) need to be conquered
in congestion control. An effective congestion control should
meet job demands (e.g., no data loss, quick convergence, high
utilization, low buffer occupation) and prevent conflicts.

Moreover, in deployment of congestion control,
ExpressPass [80] is a typical delay-bouned framework
based on end-to-end scheduling, which uses credit packets
to control data packets. In addition, Remote-Direct-Memory-
Access (RDMA) is implemented to guarantee the requirements
with a strict latency. Reacting in accurate fashion of early
congestion signals is also a reasonable approach, which uses
ECN-based algorithms [128], [131], [133], [152] to prevent
network latency [153]–[155]. Moreover, in terms of avoiding
data loss, Priority-Flow-Control (PFC) focuses on providing

Fig. 10. CODA with machine learning: as an improvement on Aalo, CODA
uses machine learning technologies to identify coflows. Two identical coflows
(C1 and C2) sharing the same bottleneck link arrive at the same time. Note
that C1 (orange) is in a high-priority queue and C2 (black) is in a low-priority
queue. The orange cylinder in the bottom of Q1 represents C1 and the orange
sectors in the cylinder of QK are the stragglers in C1. Stragglers in C1 are
blocked by C2, while other lower-priority coflows (grey) can complete earlier.

an aggressive increment. However, these rate-control tech-
nologies may still face a number of challenges [80]. Thus, an
alternative is to make an explicit decision using a distributed
controller [151].

2) Machine Learning in Scheduling: The rapidly developed
machine learning technologies pioneer a new direction for
promoting scheduling performance [145], [147], [156]–[160].

As shown in Fig. 10, CODA uses a machine learn-
ing algorithm called Rough-Density Based Spatial Clustering
Applications with Noise (R-DBSCAN) [161] to identify
coflow. Rought-DBSCAN is a variant of DBSCAN, which
achieves a balance between training accuracy and conver-
gence speed. R-DBSCAN can automatically control the cluster
dimension according to a radius parameter. Thus, it is suit-
able to employ R-DBSCAN for incremental classification with
the information of dynamic flow arrival and completion. Note
that R-DBSCAN is deployed in a multi-level scheme and
users do not need to modify applications. Meanwhile, CODA
explores both explicit and implicit attributes. More precisely,
explicit attributes represent flow characteristics containing traf-
fic size and arrival time, while implicit attributes capture
transmission patterns for designing data-parallel frameworks.
Zhang et al. claimed that traditional traffic identification algo-
rithms [24], [162]–[170] are not suitable for the situation
associated with coflows. Because a coflow is a collection of
semantic-related flows that cannot be predicted in advance
and needs periodical identification. Therefore, DBSCAN is
adopted as a fundamental algorithm for meeting the require-
ments in design. Moreover, to recognize a coflow, CODA
requires improving accuracy and speed. Thus, R-DBSCAN is
proposed which has an obvious superiority over DBSCAN in
evaluation. The procedure of R-DBSCAN can be described in
three steps: (1) Scanning dataset to derive leaders and their
followers; (2) Running an algorithm with the same radius in
DBSCAN, but adopting the set of leaders to derive clusters; (3)
Deriving the cluster of flows from identified cluster of leaders,
based on leader-follower relationships. Note that R-DBSCAN
has not only a much lower complexity, but also fewer loss of
accuracy compared with DBSCAN.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3572 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

TABLE III
SUMMARY OF METRICS IN CLUSTER FRAMEWORKS

Moreover, technologies of machine leaning can be
adopted to predict time consumption of workloads.
Ousterhou et al. [171] claimed that the mean error between
estimation time and realistic time is within 9%. Based
on this technology, MonoSpark [171] is proposed. The
estimation controller in MonoSpark employs a sequence of
matrix multiplications to solve the least-square problems
in a 15-machine cluster where each machine has two SSD
disks. Every multiplication contains a huge matrix which
has multiple rows and columns. There are three aspects to
explain why these workloads are different from formers:
(1) MonoSpark improves the performance of CPU [172].
Matrices are considered as patterns of doubles which can
be serialized rapidly; (2) Numerous data is sent between
different stages. This can be combined into CPU optimization
to improve the performance of data-intensive applications;
(3) The storage of workloads is in memory instead of disks.

Moreover, VideoStorm [173] also uses machine learning
technologies to analyse the streams. VideoStorm estimates
each configuration which is identified as F1 score [174],
making a tradeoff between precision and recall.

V. EVALUATION METRICS

To evaluate the performance of diverse cluster frameworks,
adopting appropriate metrics is important. In this section, we
will compare a number of typical metrics which are employed
in existing frameworks. As shown in Table III, we summarize

existing cluster frameworks and compare them in different
metrics.

A. Existing Metrics

As cluster frameworks are widely deployed in DCNs,
data-parallel jobs can be efficiently processed via distributed
systems, which manipulate huge amounts of data. Due to
the high cost of hardware, it is natural to make full use
of resources (e.g., CPU and bandwidth). Moreover, the
application-level performance should also be optimized when
cluster frameworks are processing big data analytics (e.g.,
Web service and user interactions). To achieve these goals,
several optimization metrics have been proposed, includ-
ing minimizing average time consumption and maximizing
resource utilization. However, many efforts paid to pro-
mote the performance of data-intensive applications meet
an optimization bound, i.e., network-level improvements are
agnostic to job-specific communication requirements. This
restriction often hurts application-level performance, even
though the network-oriented metrics like FCT and fairness
are improved. Fortunately, the abstraction of coflow [37] is
proposed to conquer this mismatch. A coflow is a collection of
parallel flows sharing a number of common performance goals.
This abstraction can be introduced into framework archtecture
and algorithm design to further minimize time consump-
tion and guarantee predictable deadlines. However, existing
flow-level scheduling schemes are insufficient to optimize the

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3573

coflow-level performance, because a coflow cannot complete
until all associated flows are finished. Note that reducing
the average CCT in a job can decrease the corresponding
JCT. Meanwhile, making more coflows meet their deadlines
can guarantee the purpose of application-level prediction. We
observe that the coflow-level metrics can be classified into
two main categories: (1) decreasing communication time (e.g.,
minimizing average CCT), and (2) guaranteeing predictable
communication time (e.g., meeting deadlines).

Unfortunately, two metrics above are conflicting in essence.
The former needs to avoid head-of-line blocking in preemptive
implementations. Meanwhile, the latter requires admission
control to ensure applications meet their deadlines. Thus, it
is hard to satisfy these two requirements simultaneously. We
need to make a tradeoff between them and take some desir-
able factors (e.g., starvation freedom and work conservation)
into algorithm design. We enumerate two typical implemen-
tations: (1) Varys adopts the Shortest-Remaining-Time-First
(SRTF) to handle coflow scheduling in a data center fabric
with multiple ports and channels. Note that the preemption
scheme in SRTF may lead to starvation in the worst case.
(2) Based on Varys, Chen et al. [43] proposed a scheduler
to minimize CCT and maximize resource utility, using the
Max-Min Fairness. Moreover, a concept called Completion-
Time-Dependent-Utility is introduced in this scheduler to
describe time-sensitive attributes in coflows. Note that utility
can be divided into three categories: completion time criti-
cal, completion time sensitive and completion time insensitive,
each of which can reflect the final profits over time. Based on
this concept, network resource is fully used and average CCT
is reduced.

1) Decreasing Communication Time: In terms of decreas-
ing communication time, minimizing average CCT is a natural
idea that should be considered first. Varys employs the SEBF
heuristic to schedule coflows and uses the MADD algorithm
to make full use of bandwidth [38]. In algorithm design,
Varys adopts the preemptive Shortest-First order, which may
result in starvation. To estimate this side effect, Varys com-
bines scheduling with two types of tunable time slice T and
δ (T > δ), ensuring that all coflows can acquire service at
least once in every (T +δ) interval. Note that Varys requires a
prior information of coflow characteristics. Meanwhile, Aalo
presents CLAS to minimize average CCT without the require-
ments of complete prior knowledge. According to coflow sizes,
CLAS classifies coflows into multiple queues, each of which
owns a specific priority class during scheduling. Moreover,
the weight of a coflow decreases with the increment of traf-
fic bytes that have been sent. CLAS prefers small coflows to
large ones, so as to reduce average CCT as much as possi-
ble. Therefore, Aalo can minimize average CCT and guarantee
starvation freedom but requiring no prior knowledge.

2) Guaranteeing Predictable Communication Time: Varys
applies MADD with admission control to enable coflows to
meet their deadlines. More precisely, MADD slows down other
coexisting coflows, so as to fit the progress of the slowest
coflow which will consume the longest time for finishing. As
a result, all coflows can make progress and average CCT is
reduced.

B. Comparison

We compare existing metrics mainly in two aspects: mech-
anism guideline and deployment performance.

1) Mechanism Guideline: In terms of reducing communi-
cation time, Baraat [5] and Orchestra [55] make compromises
between preemption and multiplexing to avoid head-of-line
blocking via FIFO order. Instead of emploing FIFO, Varys
optimizes coflow scheduling by adopting SEBF heuristic and
MADD algorithm, but it requires complete prior knowledge
of coflow characteristics (e.g., the number of flows, traffic
sizes and cluster status). Meanwhile, to guarantee the pre-
dictable communication times, Chen et al. [43] proposed
the idea that meeting task deadlines should be jointly con-
sidered with optimizing resource utility, using Max-Min
fairness.

2) Deployment Performance: As long response time can
result in significant hurt job performance, different metrics are
presented to reflect the feasibility of both systems and algo-
rithms. In terms of decreasing communication time, Orchestra
schedules flows by up to 4.5× faster than Hadoop. Note
that Baraat outperforms pFabric and Orchestra in various
workloads. To guranteee predictable deadline, Varys operates
communication stages by up to 3.16× faster than the per-flow
mechanisms on average. Meanwhile, Varys makes up to 2×
more coflows meet their deadlines. Moreover, Aalo also com-
pletes jobs by up to 1.93× faster on average, compared with
per-flow mechanisms. Finally, Chronos ensures 1.6× more
coflows meet their deadlines compared with existing flow-level
schemes.

VI. DESIRABLE PROPERTIES

To design an efficient cluster framework, a number of desir-
able properties should be taken into consideration, including
robustness and efficiency. We classify above properties into
five categories: (1) fault tolerance, (2) scalability, (3) star-
vation freedom, (4) work conservation, and (5) resource
prediction.

A. Fault Tolerance

Failures pervasively exist during the executions of data-
intensive applications [16]. The main solution to fault toler-
ance is to restart the master and other slave nodes [175], [176].

In Dryad, failure policy in default can apply to the nor-
mal situation in which each vertex program is determin-
istic. As the communication pattern can be aggregated as
a Directed-Acyclic-Graph (DAG), it is natural to ensure
each job with immutable inputs to fetch the same results,
regardless of network and disk failures during executions.
Dryad introduces non-deterministic vertices into the frame-
work to make their strategy feasible. A scalable mecha-
nism [16] is to allow non-standard applications for user
interactions.

RDD is a distributed memory data structure widely used in
Spark [17]. RDD allows programs to be executed in memory
without the consumption of I/O-bound processes (e.g., disk
operation and network transmission), so as to accelerate data-
intensive applications. Different from the distributed shared

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3574 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

memory technologies, RDD is produced via coarse-grained
transformations, avoiding operations on an arbitrary memory
location. Although RDD is restricted to accomplish bulk inputs
due to these coarse-grained transformations, RDD still has a
robust performance on fault tolerance. In Spark, failures of
partial tasks can be restored and the global process still can
be executed smoothly. All in-flight phases will be re-launched
by the central handler instantly when a distributed scheduler
fails. Due to the fact that tasks may be executed repetitively,
RDD needs to ensure the idempotent property in operations
for re-launching tasks.

Meanwhile, in Hedera, each scheduler should be responsible
for both link and switch failures during resource allocation
and job execution. In order to design a simple architecture,
the PortLand-based routing and fault tolerance protocols are
employed in the implementation of Hedera [54]. Moreover, the
standard PortLand mechanisms in Hedera can catch failures
during scheduling and re-route flows which are mapped to
failures.

Although some frameworks adopt the decentralized sched-
ulers to alleviate the issues of scalability and fault tolerance,
failures in job execution still exist. For instance, Sparrow [74]
employs a decentralized scheduler, elaborating the design to
guarantee fault tolerance. As the schedulers in Sparrow do
not have any logically centralized feature, the failure on one
scheduler will not impact others. In order to restore a broken
scheduler, the framework needs to recognize the failure and
find a backup scheduler to connect. To implement the prop-
erty of fault tolerance, Sparrow owns a Java client that handles
failures between Sparrow schedulers. The client accepts a list
of schedulers associated with all applications and connects
to the first scheduler in the list. The client needs to notify
the scheduler when to send messages properly. If the sched-
uler is not working regularly, the client will link to the next
scheduler. In this way, Sparrow can make correct strategies to
handle in-flight tasks if a scheduler fails. Thus, Sparrow will
restart failure jobs to promote the processes of different appli-
cations, instead of acquiring the information of jobs which are
launched by failure schedulers.

Moreover, in terms of system robustness, Aalo considers
three failure scenes: (1) A daemon will not block job execu-
tion when it is failed, because the client libraries will haul
off until the daemon is restarted. Thus, the daemon is still
asynchronous to the later coordination procedure. (2) Client
libraries pay attention to flow size and will attempt to recon-
nect to the coordinator regularly when meeting failures. (3) To
restart a failed task, related flows are re-launched by matching
job schedulers.

Furthermore, CODA [40] solves failures on master node via
re-execution. The status of re-executed master can be rebuilt
with latest updated wave. Only after the later scheduling are
prepared, restored agents can coordinate coflows with each
other. Due to the requirements of high precision, it is necessary
to correctly identify and detect failures in reality. Note that,
if these failures frequently occur, the performance of coflow
scheduling will be significantly influenced. As a result, the
kernel idea in CODA is to develop a robust scheduler for fault
tolerance.

B. Consistency

As the machine learning applications dominate the big data
applications, existing distributed systems trend to provide
machine learning features. In the design of these distributed
machine learning systems (DMLS), consistency-control is
a crucial problem [177], [178]. The inconsistency may
potentially retard the convergence speed in many machine
learning (ML) algorithms, e.g., the Stochastic Gradient
Decent (SGD) and Latent Dirichlet Allocation (LDA). Thus,
various consistency mechanism are proposed to mitigate the
impact of inconsistency. There are three main categories of
consistency machenisms: Bulk Synchronous Parallel (BSP)
[67], [179]–[181], Stale Synchronous Parallel (SSP) [182],
and Asynchronous Parallel (ASP) [177], [183].

SSP is widely accepted (SSP is better than BSP and ASP
in most pratical scenarios) by many DMLS [85], [184], [185].
The key idea in SSP is to make fast workers “wait” for slow
ones, ensuring the gap of iteration progress between the fastest
one and the slowest within s steps. Unfortunately, the stale
policy in SSP may cause the waste of computation resource
on fast workers. More seriously, in the scenario of cluster
computing and datacenter networks, this phenomenon will be
more ubiquitous. In addition, the heterogeneity of hardware
resources (e.g., CPU and GPU) and network topology may
also aggravate the difficulty of SSP deployment, even making
SSP inapplicable in real productions.

Consequently, the key of designing an efficient DMLS is
to make a trade-off between system efficiency and algorithm
convergence speed in iteration procedures. It can be trans-
lated into a goal about making full use of system resource
(both in computation and communication), while not hurting
the performance of consistency-control when synchronizing
(updating and sharing) parameters across the network.

C. Scalability

To achieve the requirements of scalability in frameworks,
overheads of job rescheduling and information aggregation
cannot be ignored due to their immediate influence on system
performance [73], [186]. Meanwhile, it is important that clus-
ter frameworks should provide HPC capacity to tackle a large
scale of data-intensive applications. Thus, a tradeoff should be
made between robustness and efficiency.

Orchestra [55] coordinates data movement with source TCs
to guide transfer continuously. For a global coordination, an
ITC manages numerous TCs, each of which selects a most
appropriate mechanism for data transfer. An ITC only has to
notify the cluster status to relevant TCs, thus it is feasible to
achieve the requirements of fault tolerance and scalability. If
an ITC is down, other existing transfers can finish their work
continually. Even the crashes in reconnection are pervasive, a
standby TC still can recover the state quickly.

Sparrow also demonstrates the superiority of distributed
systems in terms of scalability. Considering a scenario that
thousands of data-intensive applications need to be executed
with short deadlines in DCNs. Such environment will gen-
erate millions of network traffic. Thus, Sparrow aims to
improve job throughput. The core idea in Sparrow is to provide

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3575

scalability on distributed worker nodes, because executing low
latency workloads is the main requirement on decentralized
frameworks, compared with centralized ones.

Furthermore, Adia claims that a fine-grained scheduler can-
not guarantee enough scalability. The flow maintenance in a
specific coflow may slow down entire progress of job exe-
cution. To avoid huge overheads in a centralized framework,
Adia is implemented to dispatch fine-grained tasks to each
daemon through network.

D. Starvation Freedom

Preemptive scheduling algorithms, usually implemented in a
priority-based manner, may suffer from starvation in the worst
case. Flows with lower priority may persistently wait for the
ones with higher priority in terms of resource (e.g., bandwidth)
allocation and scheduling. Adia ensures starvation freedom by
prioritizing links according to traffic load and time consump-
tion dynamically. As a result, the priority of a link will rise if
the transmission has been executed for a long time. Moreover,
each link softly reserves a portion of bandwidth (donated as
a α) for flows, which belong to a low priority coflow. On the
contrary, a flow belonging to a high priority coflow can acquire
at most (1−α) of uplink bandwidth if other flows on the same
link are pending. Note that the pending flows will fairly share
the reserved bandwidth. By combining aging and multiplexing,
Adia ensures no flow or coflow will be perpetually suspended.
Meanwhile, the FIFO-LM algorithm in Barrat [5] can dynam-
ically change the level of multiplexing and ensure heavy tasks
will not block light ones. Furthermore, employing user-defined
thresholds is also a feasible solution [79]. In this approach, a
coflow which has waited for a long time will be assigned
with a higher priority, thus will get more opportunities for
scheduling.

E. Work Conservation

Work conservation guarantees that a task in lower prior-
ity can get opportunity for scheduling, if the highest priority
task cannot make full use of the resources (e.g., the network
bandwidth). In priority-based scheduling, bandwidth is allo-
cated to flows belonging to the fastest coflow on the in-flight
links. The remaining bandwidth is assigned according to the
priorities of flows and the procedure of rate allocation can fin-
ish when all the links are saturated and no flow is suspended.
Employing work conservation can help to backfill the unsat-
urated resources into priority queues, making the remaining
bandwidth allocated to coflows as much as possible, so as to
facilitate the transmission progress.

Taking Adia [42] as an example, Adia schedules coflows
based on priority classes. The fastest coflow in a congested
link has the highest priority to obtain bandwidth allocation.
Meanwhile, the remaining bandwidth is allocated to other
coflows based on their priorities. Adia ensures that available
bandwidth is fully used with integrated backfilling, so as to
guarantee work conservation.

F. Resource Prediction and Measurement

In a framework design, guaranteeing the predictability on
resource is also an important issue. At present, many features

can be estimated through mathematical methods. For exam-
ple, the link status in Adia is estimated by daemons when the
corresponding ports are ready to receive messages. In addi-
tion, Chowdhury et al. [93] estimated the available bandwidth
using periodic updates from slave nodes in each time interval.

As a great amount of business-critical jobs may be produced
repeatedly in DCNs, Corral [122] needs to locate data accu-
rately, using the pre-defined submission time and predictable
resource demands to improve local property of network. Thus,
Corral is a predictable framework which takes the advantages
of job prediction to optimize data transmission and computa-
tion location. Note that the prediction accuracy in Corral is
associated with a number of features (e.g., input data size and
job demands). Considering these features together can help
to make the error ratio in a low level. Based on prediction,
Corral can figure out the input data size of each job in the
recent one-month period. In addition, Corral can predict the
data location in an arbitrary time with the job information in
past few days.

Moreover, Mantri [89] can estimate the time consumption
for data-intensive applications executed by cluster frameworks
in DCNs. Ananthanarayanan et al. [89] claimed that reading
input data in cluster can provide the possibility for assessment.
In the architecture of Mantri, the information of each task will
be informed to schedulers. More precisely, Mantri can analyse
the status of each scheduler for predicting time consumption.
Thus, Mantri makes use of the remaining time to manipulate
data. Moreover, Mantri can figure out the time consumption
which is estimated via the actions of previous tasks.

In addition, TopCluster [187] can estimate the cost of tasks
by dispatching them to reducers. In existing distributed mon-
itoring approaches, as adaptive load balancing algorithms are
based on practical cost estimations which acquire data from
mappers, the cardinality of clusters is the exclusive variable
for estimation cost. Therefore, it is critical to calculate this
cardinality accurately. The estimation needs to consider data
skew with the column diagram of cluster frameworks. More
precisely, TopCluster can figure out the separation cost esti-
mations when data is in a high-skew distribution. Furthermore,
TopCluster does not need to care about the scale of each clus-
ter, but only aims to figure out the average scale of entire
clusters for conducting cost estimation.

VII. OPEN ISSUES AND SUMMARY

We list three typical issues which are deserved for further
researches.

Network Fabric: Schedulers can be designed in a non-
intrusive manner, similar to the SPC mechanism in Baraat.
This manner only allows light-weight changes to the switches.
In the future, proposals of programmable switches [188] can
be introduced into network fabric design.

Bottleneck: As CPU and network can be the optimization
bottlenecks in the worst cases, it is natural to employ the
pipeline-based technologies in DCNs. Moreover, the work
conservation also should be taken into consideration.

Machine Learning: Technologies in machine learning can be
adopted into the implementation of cluster frameworks. Taking

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3576 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

CODA as an example, it employs the distance metric learning
to identify a coflow. We believe that a number of challenges
can be conquered via machine leaning technologies. Moreover,
as traditional distributed systems are evolving to DMLS, the
desirable properties such as data consistency and computation
efficiency should be taken into consideration. It is natural to
achieve a balance between these factors, so as to guarantee
the synchronization effectiveness while not deteriorating the
convergence accuracy.

Energy Efficiency: In real productions, the powerful compu-
tation capacity of data centers requires huge amount of energy.
The energy consumption is also a crucial issue which should
be taken into consideration. An applicable cluster framework
needs to make a trade-off between processing performance
and energy efficiency [189]–[191]. As the abstraction of
green [192], [193] has been widely used in many researches, it
is high time that data centers should support the green feature.

Heterogeneous Computing: A modern data center is com-
prised of thousands of independent machines to provide
sufficient computation capacity. However, these machines may
equipped with various hardwares. For instance, for process-
ing ML applications, some machines will equip with extra
powerful GPUs, while the others may only own commod-
ity CPUs. Meanwhile, the network topology may also be
heterogeneous [194]: some machines are connected through
gigabyte Ethernet, while the others are located in a wireless
cellular network [195], [196]. This heterogeneity will sig-
nificantly hamper the data consistency and job scheduling.
Consequently, conquering the heterogeneity between machines
is also a crucial issue that needs to be further researched.

Summary: Data-parellel applications in data centers have
attracted much attention in both academia and industry. In
this article, we provide an overview of distributed frameworks
and summarize a number of significant guidelines in algorithm
design and system implementation. In previous researches,
efforts paid to improve system performance can be classi-
fied into three aspects: network, disk and straggler. To design
an efficient scheduling algorithm, many basic coordination
principles need to be taken into consideration. Thus, making
an appropriate strategy is a key to develop a robust dis-
tributed system. We exposit different algorithms and compare
the metrics, which are adopted in state-of-the-art frameworks.
Moreover, some desirable properties such as fault tolerance,
scalable and starvation freedom should also be guaranteed
in algorithm design. Moreover, predictability and estimabil-
ity are also widely used to build HPC clusters, due to the
rapid development of applications in deep learning.

We hope this survey will illuminate a promising and pon-
derable research branch, providing solid basic knowledge for
readers to further explore this area.

REFERENCES

[1] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green challenges:
Big data toward green applications,” IEEE Syst. J., vol. 10, no. 3,
pp. 888–900, Sep. 2016.

[2] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green chal-
lenges: Greening big data,” IEEE Syst. J., vol. 10, no. 3, pp. 873–887,
Sep. 2016.

[3] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information and
communications technologies for sustainable development goals: State-
of-the-art, needs and perspectives,” IEEE Commun. Surveys Tuts., to
be published.

[4] H. Li, K. Ota, M. Dong, A. Vasilakos, and K. Nagano, “Multimedia
processing pricing strategy in GPU-accelerated cloud computing,”
IEEE Trans. Cloud Comput., to be published.

[5] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in Proc. SIGCOMM,
Chicago, IL, USA, Aug. 2014, pp. 431–442.

[6] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. SIGCOMM, Helsinki, Finland,
Oct. 2012, pp. 127–138.

[7] G. Luo, Z. Qian, M. Dong, K. Ota, and S. Lu, “Network-aware
re-scheduling: Towards improving network performance of virtual
machines in a data center,” in Proc. ICA3PP, Dalian, China, Aug. 2014,
pp. 255–269.

[8] P. Li et al., “Traffic-aware geo-distributed big data analytics with pre-
dictable job completion time,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 6, pp. 1785–1796, Jun. 2017.

[9] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in geo-
distributed data centers,” in Proc. IWQoS, 2017, pp. 1–6.

[10] H. Li, M. Dong, K. Ota, and M. Guo, “Pricing and repurchasing for big
data processing in multi-clouds,” IEEE Trans. Emerg. Topics Comput.,
vol. 4, no. 2, pp. 266–277, Apr./Jun. 2016.

[11] X. He, K. Wang, H. Huang, and B. Liu, “QoE-driven big data archi-
tecture for smart city,” IEEE Commun. Mag., vol. 56, no. 2, pp. 88–93,
Feb. 2018.

[12] K. Wang et al., “Wireless big data computing in smart grid,” IEEE
Wireless Commun., vol. 24, no. 2, pp. 58–64, Apr. 2017.

[13] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, “Schemes for fast transmis-
sion of flows in data center networks,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 3, pp. 1391–1422, 3rd Quart., 2015.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. SIGCOMM, Seattle, WA,
USA, Aug. 2008, pp. 63–74.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. OSDI, San Francisco, CA, USA, Dec. 2004,
pp. 137–150.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
in Proc. EuroSys, Lisbon, Portugal, Mar. 2007, pp. 59–72.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. HotCloud,
Boston, MA, USA, Jun. 2010, pp. 1–7.

[18] W. Chen, J. Rao, and X. Zhou, “Preemptive, low latency datacen-
ter scheduling via lightweight virtualization,” in Proc. USENIX ATC,
Santa Clara, CA, USA, Jul. 2017, pp. 251–263.

[19] L. Chen, B. Li, and B. Li, “Surviving failures with performance-centric
bandwidth allocation in private datacenters,” in Proc. IC2E, Berlin,
Germany, Apr. 2016, pp. 52–61.

[20] P. Bodík et al., “Surviving failures in bandwidth-constrained data-
centers,” SIGCOMM Comput. Commun. Rev., vol. 42, pp. 431–442,
Aug. 2012.

[21] L. Popa et al., “ElasticSwitch: Practical work-conserving bandwidth
guarantees for cloud computing,” in Proc. SIGCOMM, Hong Kong,
Aug. 2013, pp. 351–362.

[22] P. X. Gao et al., “Network requirements for resource disaggregation,”
in Proc. OSDI, Savannah, GA, USA, 2016, pp. 249–264.

[23] J. E. Gonzalez et al., “GraphX: Graph processing in a distributed
dataflow framework,” in Proc. OSDI, Broomfield, CO, USA, 2014,
pp. 599–613.

[24] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classifi-
cation and application identification using machine learning,” in Proc.
LCN, Sydney, NSW, Australia, Nov. 2005, pp. 250–257.

[25] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of
multiple resource types,” in Proc. NSDI, Boston, MA, USA, 2011,
pp. 323–336.

[26] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters,” in Proc. OSDI,
Savannah, GA, USA, 2016, pp. 65–80.

[27] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing for
datacenter jobs with placement constraints,” in Proc. SC, Salt Lake
City, UT, USA, Nov. 2016, p. 86.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3577

[28] S. Wang et al., “A survey of coflow scheduling schemes for data
center networks,” IEEE Commun. Mag., vol. 56, no. 6, pp. 179–185,
Jun. 2018.

[29] S. Bassoy, H. Farooq, M. A. Imran, and A. Imran, “Coordinated multi-
point clustering schemes: A survey,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 2, pp. 743–764, 2nd Quart., 2017.

[30] S. Yu, M. Liu, W. Dou, X. Liu, and S. Zhou, “Networking for big data:
A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 531–549,
1st Quart., 2017.

[31] A. Riekstin et al., “A survey of policy refinement methods as a support
for sustainable networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 222–235, 1st Quart., 2016.

[32] K. Bilal et al., “A taxonomy and survey on green data center networks,”
Future Gener. Comput. Syst., vol. 36, no. 7, pp. 189–208, 2014.

[33] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
Commun. ACM, vol. 54, no. 3, pp. 95–104, 2011.

[34] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering, “IPv6 flow
label specification,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 3697, 2004.

[35] N. Dukkipati and N. McKeown, “Why flow-completion time is the
right metric for congestion control,” SIGCOMM Comput. Commun.
Rev., vol. 36, no. 1, pp. 59–62, 2006.

[36] S. Dutta, V. R. Cadambe, and P. Grover, “Coded convo-
lution for parallel and distributed computing within a dead-
line,” CoRR, vol. abs/1705.03875, pp. 2403–2407, Jun. 2017,
doi: 10.1109/ISIT.2017.8006960.

[37] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction
for cluster applications,” in Proc. HotNets, Redmond, WA, USA,
Oct. 2012, pp. 31–36.

[38] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow schedul-
ing with Varys,” in Proc. SIGCOMM, Chicago, IL, USA, Aug. 2014,
pp. 443–454.

[39] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” in Proc. SIGCOMM, London, U.K., Aug. 2015,
pp. 393–406.

[40] H. Zhang et al., “CODA: Toward automatically identifying and
scheduling coflows in the dark,” in Proc. SIGCOMM, Florianópolis,
Brazil, Aug. 2016, pp. 160–173.

[41] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” in Proc. INFOCOM, Atlanta,
GA, USA, May 2017, pp. 1–9.

[42] J. Jiang, S. Ma, B. Li, and B. Li, “Adia: Achieving high link utilization
with coflow-aware scheduling in data center networks,” IEEE Trans.
Cloud Comput., to be published.

[43] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion times
with utility max–min fairness,” in Proc. INFOCOM, San Francisco,
CA, USA, Apr. 2016, pp. 1–9.

[44] W. Borjigin, K. Ota, and M. Dong, “Time-saving first: Coflow schedul-
ing for datacenter networks,” in Proc. VTC, Toronto, ON, Canada,
Sep. 2017, pp. 1–5.

[45] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron, “Scale-up vs scale-out for Hadoop: Time to rethink?”
in Proc. SoCC, Santa Clara, CA, USA, Oct. 2013, Art. no. 20.

[46] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. IMC,
Chicago, IL, USA, Nov. 2009, pp. 202–208.

[47] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92–99, 2010.

[48] M. Nuyens, A. Wierman, and B. Zwart, “Preventing large sojourn times
using SMART scheduling,” Oper. Res., vol. 56, no. 1, pp. 88–101,
2008.

[49] J. Nair, A. Wierman, and B. Zwart, “Tail-robust scheduling via limited
processor sharing,” Perform. Eval., vol. 67, no. 11, pp. 978–995, 2010.

[50] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. NSDI, San Jose,
CA, USA, Apr. 2012, p. 2.

[51] T. Condie et al., “MapReduce online,” in Proc. NSDI, San Jose, CA,
USA, Apr. 2010, p. 21.

[52] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly,
“Dandelion: A compiler and runtime for heterogeneous systems,” in
Proc. SOSP, Farmington, CT, USA, Nov. 2013, pp. 49–68.

[53] G. Ananthanarayanan et al., “PACMan: Coordinated memory caching
for parallel jobs,” in Proc. NSDI, San Jose, CA, USA, Apr. 2012, p. 20.

[54] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, San Jose, CA, USA, Apr. 2010, p. 19.

[55] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with Orchestra,” in Proc.
SIGCOMM, Toronto, ON, Canada, Aug. 2011, pp. 98–109.

[56] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in Proc.
SoCC, San Jose, CA, USA, Oct. 2012, Art. no. 9.

[57] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. MSST, Incline Village, NV, USA,
May 2010, pp. 1–10.

[58] Aparch Hadoop. Accessed: Jul. 2008. [Online]. Available:
http://hadoop.apache.org

[59] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing
in practice: The Condor experience: Research articles,” Concurrency
Comput. Pract. Exp. Grid Perform., vol. 17, nos. 2–4, pp. 323–356,
Feb. 2005.

[60] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A
system for programming graphics hardware in a C-like language,” in
Proc. SIGGRAPH, San Diego, CA, USA, 2003, pp. 896–907.

[61] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using data paral-
lelism to program GPUs for general-purpose uses,” in Proc. ASPLOS,
San Jose, CA, USA, Oct. 2006, pp. 984–988.

[62] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. SOSP, Oct. 2003, pp. 29–43.

[63] D. DeWitt and J. Gray, “Parallel database systems: The future of
high performance database systems,” Commun. ACM, vol. 35, no. 6,
pp. 85–98, 1992.

[64] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “SparkBench:
A comprehensive benchmarking suite for in memory data analytic
platform spark,” in Proc. CF, 2015, Art. no. 15.

[65] Y. Yu et al., “DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language,” in Proc. OSDI,
San Diego, CA, USA, Dec. 2008, pp. 1–14.

[66] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
iterative data processing on large clusters,” Proc. VLDB Endowment,
vol. 3, nos. 1–2, pp. 285–296, 2010.

[67] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. SIGMOD, Indianapolis, IN, USA, Jun. 2010, pp. 135–146.

[68] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[69] S. Rao, “Distributed systems: An algorithmic approach,” IEEE Distrib.
Syst. Online, vol. 9, no. 11, p. 3, Nov. 2008.

[70] D. Sun et al., “Re-stream: Real-time and energy-efficient resource
scheduling in big data stream computing environments,” Inf. Sci.,
vol. 319, pp. 92–112, Oct. 2015.

[71] V. Chakaravarthy, S. Kenkre, S. A. Mondal, V. Pandit, and
Y. Sabharwal, “Reusable resource scheduling via colored interval cov-
ering,” in Proc. IPDPS, Chicago, IL, USA, May 2016, pp. 1003–1012.

[72] Y. Li et al., “Efficient online coflow routing and scheduling,” in Proc.
MobiHoc, Paderborn, Germany, Jul. 2016, pp. 161–170.

[73] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. SIGCOMM, London, U.K.,
Aug. 2015, pp. 139–152.

[74] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proc. SOSP, Farmington, UT,
USA, Nov. 2013, pp. 1–16.

[75] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter trans-
port,” in Proc. SIGCOMM, Hong Kong, Aug. 2013, pp. 435–446.

[76] Z. Li, Y. Zhang, D. Li, K. Chen, and Y. Peng, “OPTAS: Decentralized
flow monitoring and scheduling for tiny tasks,” in Proc. INFOCOM,
San Francisco, CA, USA, Apr. 2016, pp. 1–9.

[77] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM:
Fast remote memory,” in Proc. NSDI, Seattle, WA, USA, Apr. 2014,
pp. 401–414.

[78] Y. Peng et al., “HadoopWatch: A first step towards comprehensive
traffic forecasting in cloud computing,” in Proc. INFOCOM, Toronto,
ON, Canada, 2014, pp. 19–27.

[79] Y. Zhao et al., “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in Proc. INFOCOM, Hong Kong, 2015,
pp. 424–432.

[80] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proc. SIGCOMM, Los Angeles, CA,
USA, Aug. 2017, pp. 239–252.

[81] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling tasks closer to data across
geo-distributed datacenters,” in Proc. INFOCOM, San Francisco, CA,
USA, Apr. 2016, pp. 1–9.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ISIT.2017.8006960

3578 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

[82] G. Ananthanarayanan et al., “GRASS: Trimming stragglers in approx-
imation analytics,” in Proc. NSDI, Seattle, WA, USA, Apr. 2014,
pp. 289–302.

[83] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. NSDI, Lombard,
IL, USA, Apr. 2013, pp. 185–198.

[84] X. Ouyang, P. Garraghan, R. Yang, P. Townend, and J. Xu, “Reducing
late-timing failure at scale: Straggler root-cause analysis in cloud data-
centers,” in Proc. DSN-FAST-ABSTRACT, Toulouse, France, Jun. 2016,
p. 2.

[85] A. Harlap et al., “Addressing the straggler problem for iterative conver-
gent parallel ML,” in Proc. SoCC, Santa Clara, CA, USA, Oct. 2016,
pp. 98–111.

[86] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. SIGCOMM, Barcelona,
Spain, Aug. 2009, pp. 63–74.

[87] C. Guo et al., “DCell: A scalable and fault-tolerant network structure
for data centers,” in Proc. SIGCOMM, Seattle, WA, USA, Aug. 2008,
pp. 75–86.

[88] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 39–50, 2009.

[89] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using Mantri,” in Proc. OSDI, Vancouver, BC, Canada,
Oct. 2010, pp. 265–278.

[90] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proc. CoNEXT, Tokyo,
Japan, Dec. 2011, Art. no. 8.

[91] W. Bai et al., “Information-agnostic flow scheduling for commod-
ity data centers,” in Proc. NSDI, Oakland, CA, USA, May 2015,
pp. 455–468.

[92] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. SIGCOMM, Toronto, ON,
Canada, Aug. 2011, pp. 242–253.

[93] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint flex-
ibility in data-intensive clusters,” in Proc. SIGCOMM, Hong Kong,
Aug. 2013, pp. 231–242.

[94] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in Proc.
NSDI, San Jose, CA, USA, Apr. 2012, p. 3.

[95] Z. Guo et al., “Spotting code optimizations in data-parallel pipelines
through PeriSCOPE,” in Proc. OSDI, Oct. 2012, pp. 121–133.

[96] V. Jeyakumar et al., “EyeQ: Practical network performance isolation at
the edge,” in Proc. NSDI, Lombard, IL, USA, Apr. 2013, pp. 297–312.

[97] L. Popa et al., “FairCloud: Sharing the network in cloud computing,”
in Proc. SIGCOMM, Helsinki, Finland, Aug. 2012, pp. 187–198.

[98] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The TCP outcast
problem: Exposing unfairness in data center networks,” in Proc. NSDI,
San Jose, CA, USA, Apr. 2012, p. 30.

[99] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is change:
Incorporating time-varying network reservations in data centers,” in
Proc. SIGCOMM, Helsinki, Finland, Aug. 2012, pp. 199–210.

[100] J. Zhang et al., “Optimizing data shuffling in data-parallel computation
by understanding user-defined functions,” in Proc. NSDI, San Jose, CA,
USA, Apr. 2012, p. 22.

[101] H. Susanto, H. Jin, and K. Chen, “Stream: Decentralized opportunis-
tic inter-coflow scheduling for datacenter networks,” in Proc. ICNP,
Singapore, Nov. 2016, pp. 1–10.

[102] Y. Gao, H. Yu, S. Luo, and S. Yu, “Information-agnostic coflow
scheduling with optimal demotion thresholds,” in Proc. ICC, May 2016,
pp. 1–6.

[103] Z. Li, Y. Zhang, Y. Zhao, and D. Li, “Efficient semantic-aware coflow
scheduling for data-parallel jobs,” in Proc. CLUSTER, Sep. 2016,
pp. 154–155.

[104] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-
resource fairness for correlated and elastic demands,” in Proc. NSDI,
Santa Clara, CA, USA, 2016, pp. 407–424.

[105] J. Zhang et al., “Data rate guarantee for coflow scheduling in network
function virtualization,” in Proc. IEEE/ACM 24th Int. Symp. Qual.
Service (IWQoS), 2016, pp. 1–6.

[106] A. Sivaraman et al., “Programmable packet scheduling at line rate,” in
Proc. SIGCOMM, Florianópolis, Brazil, Aug. 2016, pp. 44–57.

[107] M. Gao, K. Wang, and L. He, “Probabilistic model checking and
scheduling implementation of an energy router system in energy
Internet for green cities,” IEEE Trans. Ind. Informat., vol. 14, no. 4,
pp. 1501–1510, Apr. 2018.

[108] C. Xu, K. Wang, and M. Guo, “Intelligent resource management in
blockchain-based cloud datacenters,” IEEE Cloud Comput., vol. 4,
no. 6, pp. 50–59, Nov./Dec. 2017.

[109] A. Rasmussen et al., “Themis: An I/O-efficient MapReduce,” in Proc.
SoCC, San Jose, CA, USA, Oct. 2012, Art. no. 13.

[110] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proc. SoCC, Seattle, WA, USA, Nov. 2014, pp. 1–15.

[111] L. Wei, W. Lian, K. Liu, and Y. Wang, “Hippo: An enhancement
of pipeline-aware in-memory caching for HDFS,” in Proc. ICCCN,
Shanghai, China, Aug. 2014, pp. 1–5.

[112] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proc. OSDI, San Diego, CA, USA, Dec. 2008, pp. 29–42.

[113] X. Ouyang et al., “Adaptive speculation for efficient Internetware appli-
cation execution in clouds,” ACM Trans. Internet Technol., vol. 18,
no. 2, Art. no. 15, 2017.

[114] R. O. Suminto et al., “PBSE: A robust path-based speculative execution
for degraded-network tail tolerance in data-parallel frameworks,” in
Proc. SoCC, Santa Clara, CA, USA, 2017, pp. 295–308.

[115] C. Chen, W. Wang, and B. Li, “Speculative slot reservation: Enforcing
service isolation for dependent data-parallel computations,” in Proc.
ICDCS, Atlanta, GA, USA, Jun. 2017, pp. 549–559.

[116] Y. Guo, J. Rao, C. Jiang, and X. Zhou, “Moving Hadoop into the cloud
with flexible slot management and speculative execution,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 798–812, Mar. 2017.

[117] P. Garraghan, X. Ouyang, P. Townend, and J. Xu, “Timely long tail
identification through agent based monitoring and analytics,” in Proc.
Int. Symp. Real Time Distrib. Comput., Apr. 2015, pp. 19–26.

[118] S. Lu et al., “Log-based abnormal task detection and root cause analysis
for spark,” in Proc. ICWS, Honolulu, HI, USA, Jun. 2017, pp. 389–396.

[119] E. B. Khunayn, S. Karunasekera, H. Xie, and K. Ramamohanarao,
“Straggler mitigation for distributed behavioral simulation,” in Proc.
ICDCS, Atlanta, GA, USA, Jun. 2017, pp. 2638–2641.

[120] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran, “EC-cache: Load-balanced, low-latency cluster
caching with online erasure coding,” in Proc. OSDI, Savannah, GA,
USA, Nov. 2016, pp. 401–417.

[121] K. Ousterhout et al., “The case for tiny tasks in compute clusters,” in
Proc. HotOS, Santa Ana Pueblo, NM, USA, May 2013, p. 14.

[122] V. Jalaparti et al., “Network-aware scheduling for data-parallel jobs:
Plan when you can,” in Proc. SIGCOMM, London, U.K., Aug. 2015,
pp. 407–420.

[123] M. Isard et al., “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. SOSP, Big Sky, MT, USA, Oct. 2009, pp. 261–276.

[124] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. EuroSys, Paris,
France, Apr. 2010, pp. 265–278.

[125] Q. Zhou et al. “Swallow: Joint online scheduling and coflow compres-
sion in datacenter networks,” in Proc. IPDPS, Vancouver, BC, Canada,
May 2018, pp. 1–10.

[126] A. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in Proc. EuroSys,
Bern, Switzerland, Apr. 2012, pp. 99–112.

[127] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in Proc.
SIGCOMM, Toronto, ON, Canada, Aug. 2011, pp. 50–61.

[128] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. SIGCOMM,
New Delhi, India, Sep. 2010, pp. 63–74.

[129] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[130] N. Dukkipati, N. McKeown, and A. G. Fraser, “RCP-AC: Congestion
control to make flows complete quickly in any environment,” in Proc.
IEEE 25th IEEE Int. Conf. Comput. Commun. (INFOCOM), Barcelona,
Spain, Apr. 2006, pp. 1–5.

[131] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proc. SIGCOMM, Pittsburgh,
PA, USA, 2002, pp. 89–102.

[132] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware data-
center TCP (D2TCP),” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 115–126, 2012.

[133] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion con-
trol for TCP in data center networks,” in Proc. Co-NEXT, Philadelphia,
PA, USA, Nov. 2010, p. 13.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: CLUSTER FRAMEWORKS FOR EFFICIENT SCHEDULING AND RESOURCE ALLOCATION IN DCNs: SURVEY 3579

[134] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc.
SIGMETRICS, London, U.K., 2012, pp. 53–64.

[135] H. Garcia-Molina and K. Salem, “Main memory database systems: An
overview,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6, pp. 509–516,
Dec. 1992.

[136] J. Ousterhout et al., “The case for RAMClouds: Scalable high-
performance storage entirely in DRAM,” SIGOPS Oper. Syst. Rev.,
vol. 43, no. 4, pp. 92–105, 2010.

[137] W. Dai, I. Ibrahim, and M. Bassiouni, “An improved straggler identi-
fication scheme for data-intensive computing on cloud platforms,” in
Proc. CSCloud, New York, NY, USA, Jun. 2017, pp. 211–216.

[138] B. Memishi, M. S. Pérez, and G. Antoniu, “Failure detector abstrac-
tions for MapReduce-based systems,” Inf. Sci., vol. 379, pp. 112–127,
Feb. 2017.

[139] C. Li, H. Shen, and T. Huang, “Learning to diagnose stragglers in
distributed computing,” in Proc. MTAGS, Salt Lake City, UT, USA,
Nov. 2016, pp. 1–6.

[140] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 379–392,
Aug. 2015.

[141] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune:
Mitigating skew in MapReduce applications,” in Proc. SIGMOD, 2012,
pp. 25–36.

[142] Oracle. [Online]. Available: http://www.oracle.com/
[143] K. Nguyen et al., “Yak: A high-performance big-data-friendly garbage

collector,” in Proc. OSDI, Savannah, GA, USA, 2016, pp. 349–365.
[144] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “Optimizing

speculative execution of deadline-sensitive jobs in cloud,” in Proc.
SIGMETRICS, 2017, pp. 17–18.

[145] X. Ouyang et al., “ML-NA: A machine learning based node
performance analyzer utilizing straggler statistics,” in Proc. ICPADS,
2017, pp. 73–80.

[146] X. Ouyang, H. Zhou, S. Clement, P. Townend, and J. Xu, “Mitigate
data skew caused stragglers through ImKP partition in MapReduce,”
in Proc. IEEE Int. Perform. Comput. Commun. Conf., San Diego, CA,
USA, 2017, pp. 1–8.

[147] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “LASER: A deep
learning approach for speculative execution and replication of deadline-
critical jobs in cloud,” in Proc. ICCCN, Vancouver, BC, Canada,
Jul. 2017, pp. 1–8.

[148] H. Xu and W. C. Lau, “Optimization for speculative execution in big
data processing clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 2, pp. 530–545, Feb. 2017.

[149] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA:
CRC Press, 2004.

[150] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter
networks,” in Proc. WREN, New York, NY, USA, 2009, pp. 73–82.

[151] L. Jose et al., “High speed networks need proactive congestion control,”
in Proc. HotNets-XIV, New York, NY, USA, 2015, pp. 1–7.

[152] M. Alizadeh et al., “Less is more: Trading a little bandwidth for ultra-
low latency in the data center,” in Proc. NSDI, San Jose, CA, USA,
Apr. 2012, pp. 253–266.

[153] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-
based congestion feedback for datacenters,” in Proc. USENIX ATC,
Santa Clara, CA, USA, 2015, pp. 403–415.

[154] R. Mittal et al., “Timely: RTT-based congestion control for the data-
center,” in Proc. SIGCOMM, London, U.K., Aug. 2015, pp. 537–550.

[155] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc.
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 307–318.

[156] H. Zhang et al., “Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters,” CoRR, vol. abs/1706.03292,
pp. 181–193, Jul. 2017.

[157] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-
intrusive performance profiling for entire software stacks based on the
flow reconstruction principle,” in Proc. OSDI, Savannah, GA, USA,
Nov. 2016, pp. 603–618.

[158] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, Savannah, GA, USA, Nov. 2016, pp. 265–283.

[159] Y. He et al., “MR-DBSCAN: An efficient parallel density-based clus-
tering algorithm using MapReduce,” in Proc. ICPADS, Dec. 2011,
pp. 473–480.

[160] X. He et al., “Green resource allocation based on deep reinforcement
learning in content-centric IoT,” IEEE Trans. Emerg. Topics Comput.,
to be published.

[161] P. Viswanath and V. S. Babu, “Rough-DBSCAN: A fast hybrid density
based clustering method for large data sets,” Pattern Recogn. Lett.,
vol. 30, no. 16, pp. 1477–1488, 2009.

[162] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 2, pp. 23–26, 2006.

[163] P. Cheeseman and J. Stutz, Bayesian Classification (Autoclass): Theory
and Results. Menlo Park, CA, USA: Amer. Assoc. Artif. Intell., 1997,
pp. 153–180.

[164] G. Murray, “Comments on ‘maximum likelihood from incomplete data
via the EM algorithm’ by Dempster, Laird, and Rubin,” J. Roy. Stat.
Soc. B, vol. 39, pp. 27–28, Apr. 1977.

[165] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel traffic classification in the dark,” in Proc. SIGCOMM,
Philadelphia, PA, USA, Aug. 2005, pp. 229–240.

[166] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian
analysis techniques,” in Proc. SIGMETRICS, Banff, AB, Canada,
Jun. 2005, pp. 50–60.

[167] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering
using machine learning techniques,” in Passive and Active Network
Measurement. Heidelberg, Germany: Springer, 2004, pp. 205–214.

[168] T. T. T. Nguyen and G. Armitage, “Training on multiple sub-flows
to optimise the use of machine learning classifiers in real-world IP
networks,” in Proc. LCN, Tampa, FL, USA, Nov. 2006, pp. 369–376.

[169] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service
mapping for QoS: A statistical signature-based approach to IP traffic
classification,” in Proc. IMC, Taormina, Italy, Oct. 2004, pp. 135–148.

[170] T. T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using machine learning,” IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[171] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks:
Architecting for performance clarity in data analytics frameworks,” in
Proc. SOSP, Shanghai, China, Oct. 2017, pp. 184–200.

[172] Openblas. [Online]. Available: http://www.openblas.net/
[173] H. Zhang et al., “Live video analytics at scale with approximation

and delay-tolerance,” in Proc. 14th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), 2017, pp. 377–392.

[174] C. J. Van Rijsbergen, “A theoretical basis for the use of co-occurrence
data in information retrieval,” J. Doc., vol. 33, no. 2, pp. 106–119,
1977.

[175] T. Akidau et al., “MillWheel: Fault-tolerant stream processing at
Internet scale,” Proc. VLDB Endowment, vol. 6, no. 11, pp. 1033–1044,
2013.

[176] M. Zaharia et al., “Discretized streams: Fault-tolerant streaming com-
putation at scale,” in Proc. SOSP, Farmington, PA, USA, 2013,
pp. 423–438.

[177] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. OSDI, Broomfield, CO, USA, Oct. 2014, pp. 583–598.

[178] Y. Huang et al., “FlexPS: Flexible parallelism control in param-
eter server architecture,” Proc. VLDB Endowment, vol. 11, no. 5,
pp. 566–579, 2018.

[179] Apache Giraph. [Online]. Available: http://incubator.apache.org/giraph
[180] Apache Hama. [Online]. Available: http://hama.apache.org
[181] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.
[182] A. J. Smola and S. M. Narayanamurthy, “An architecture for parallel

topic models,” Proc. VLDB Endowment, vol. 3, no. 1, pp. 703–710,
2010.

[183] Q. Ho et al., “More effective distributed ML via a stale synchronous
parallel parameter server,” in Proc. NIPS, Dec. 2013, pp. 1223–1231.

[184] Tencent Angel. [Online]. Available: https://github.com/Tencent/angel
[185] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed

parameter servers,” in Proc. SIGMOD, Chicago, IL, USA, May 2017,
pp. 463–478.

[186] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in Proc. OSDI, Savannah,
GA, USA, 2016, pp. 301–316.

[187] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing in
MapReduce based on scalable cardinality estimates,” in Proc. ICDE,
Washington, DC, USA, 2012, pp. 522–533.

[188] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières, “Tiny packet
programs for low-latency network control and monitoring,” in Proc.
HotNets, College Park, MD, USA, Nov. 2013, Art. no. 8.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

3580 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 4, FOURTH QUARTER 2018

[189] C. Ge, Z. Sun, N. Wang, K. Xu, and J. Wu, “Energy management
in cross-domain content delivery networks: A theoretical perspec-
tive,” IEEE Trans. Netw. Service Manag., vol. 11, no. 3, pp. 264–277,
Sep. 2014.

[190] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency
oriented traffic offloading in wireless networks: A brief survey and a
learning approach for heterogeneous cellular networks,” IEEE J. Sel.
Areas Commun., vol. 33, no. 4, pp. 627–640, Apr. 2015.

[191] H. Li, M. Dong, X. Liao, and H. Jin, “Deduplication-based energy
efficient storage system in cloud environment,” Comput. J., vol. 58,
no. 6, pp. 1373–1383, Jun. 2015.

[192] K. Wang, Y. Wang, Y. Sun, S. Guo, and J. Wu, “Green industrial
Internet of Things architecture: An energy-efficient perspective,” IEEE
Commun. Mag., vol. 54, no. 12, pp. 48–54, Dec. 2016.

[193] H. Huang, S. Guo, J. Wu, and J. Li, “Green datapath for TCAM-based
software-defined networks,” IEEE Commun. Mag., vol. 54, no. 11,
pp. 194–201, Nov. 2016.

[194] J. An et al., “Achieving sustainable ultra-dense heterogeneous networks
for 5G,” IEEE Commun. Mag., vol. 55, no. 12, pp. 84–90, Dec. 2017.

[195] R. Atat et al., “Enabling cyber-physical communication in 5G cellular
networks: Challenges, spatial spectrum sensing, and cyber-security,”
IET Cyber Phys. Syst. Theory Appl., vol. 2, no. 1, pp. 49–54, Apr. 2017.

[196] K. Wang, Y. Wang, D. Zeng, and S. Guo, “An SDN-based architec-
ture for next-generation wireless networks,” IEEE Wireless Commun.,
vol. 24, no. 1, pp. 25–31, Feb. 2017.

Kun Wang (M’13–SM’17) received the first Ph.D.
degree from the Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2009 and
the second Ph.D. degree from the University of Aizu,
Japan, in 2018, both in computer science. From
2013 to 2015, he was a Post-Doctoral Fellow with
the Electrical Engineering Department, University of
California, Los Angeles, CA, USA. He is currently a
Research Fellow with the Department of Computing,
Hong Kong Polytechnic University, Hong Kong, and
also a Full Professor with the School of Internet of

Things, Nanjing University of Posts and Telecommunications. He has pub-
lished over 100 papers in referred international conferences and journals.
He was a recipient of the Best Paper Award at IEEE GLOBECOM16. He
serves as an Associate Editor for IEEE ACCESS, an Editor for the Journal
of Network and Computer Applications, the Journal of Communications
and Information Networks, and EAI Transactions on Industrial Networks
and Intelligent Systems and a Guest Editor for IEEE ACCESS, Future
Generation Computer Systems, Peer-to-Peer Networking and Applications,
and the Journal of Internet Technology. He was the Symposium Chair/Co-
Chair of IEEE IECON16, IEEE EEEIC16, IEEE WCSP16, and IEEE
CNCC17. He is a member of ACM.

Qihua Zhou is currently pursuing the Ph.D. degree
with the School of Computer Science, Nanjing
University of Posts and Telecommunications, China.
His current research interests include operating
system, distributed processing, parallel computing,
and machine learning.

Song Guo (SM’11) received the Ph.D. degree in
computer science from the University of Ottawa. He
was a Full Professor with the University of Aizu,
Japan. He is currently a Full Professor with the
Department of Computing, Hong Kong Polytechnic
University. His research has been sponsored by
JSPS, JST, MIC, NSF, NSFC, and industrial compa-
nies. His research interests are mainly in the areas
of cloud and green computing, big data, wireless
networks, and cyber-physical systems. He has pub-
lished over 300 conferences and journal papers in

the above areas. He was a recipient of multiple best paper awards from
IEEE/ACM conferences. He has served as an Editor of several journals,
including IEEE TPDS, IEEE TETC, IEEE TGCN, IEEE Communications
Magazine, and Wireless Networks. He has been actively participating in inter-
national conferences as the general chair and TPC chair. He is a Senior
Member of ACM and an IEEE Communications Society Distinguished
Lecturer.

Jiangtao Luo (M’11–SM’15) received the B.S.
degree from Nankai University in 1993 and the
Ph.D. degree from the Chinese Academy of Science
in 1998. He is currently a Full Professor, a
Ph.D. Supervisor, and the Deputy Dean of the
Electronic Information and Networking Research
Institute, Chongqing University of Posts and
Telecommunications. He has been a Visiting Scholar
with the University of Hamburg, Germany, and the
University of Southern California, USA, in 2015 and
2016. His major research interests are network pro-

tocol analysis, network data mining, urban computing, and future Internet
architecture. He has published over 100 papers and owned 21 patents in the
above areas. He was a recipient of the Chinese State Award of Scientific and
Technological Progress in 2011, the Chongqing Provincial Award of Scientific
and Technological Progress twice in 2010 and 2007, respectively, and the
Chongqing Science and Technology Award for Youth in 2010. He is an ACM
Member.

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on February 11,2022 at 12:14:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

