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Abstract—Earth observation satellites in low earth orbit (LEO)
collect a large amount of image data daily, while space-to-ground
links have become the major bottleneck for data transmission due
to the limited bandwidth. Existing approaches focus on exploring
more efficient routing strategies to achieve better data transmis-
sion but still struggle to keep pace with the surging volume of
observed data. However, the advancement of onboard computing
power has opened the possibility of processing data on satellites
to reduce the transmitted data volume. This paper proposes
a distributed deep reinforcement learning (DRL) algorithm to
improve transmission efficiency by jointly optimizing computing
and routing. Aiming to minimize task latency while considering
the limitations of satellite storage resources, the problem is
modeled as a partially observable Markov process (POMDP).
An algorithm based on dueling double deep Q-Network (Dueling-
DDQN) is proposed to achieve dynamic decision-making utilizing
local and neighboring resource states. Furthermore, a method
for dynamic optimization of backhaul destinations is proposed,
using the pre-trained Q-network to estimate action values across
multiple candidate destination satellites, thus enabling further
optimization of data transmission without additional training.
Simulation results indicate that the proposed algorithm achieves
the lowest latency across various task loads compared to baseline
methods.

Index Terms—LEO satellite network, computing and routing,
deep reinforcement learning, distributed algorithm.

I. INTRODUCTION

LEO satellite Constellations consisting of hundreds of
satellites have been launched for frequent high-resolution

Earth observations. Improvements in sensing technology, such
as hyperspectral image (HSI) [1], have greatly enhanced data
precision while resulting in a dramatic increase in the volume
of observation data. Currently, each observation satellite pro-
duces approximately 1 TB data daily [2], which is transmitted
in terms of raw data and takes up a lot of satellite bandwidth.
Additionally, these data can not always be transmitted back
to the ground timely due to the non-uniform distribution of
ground stations. Therefore, how to transmit observation data
efficiently to the ground has emerged as a crucial concern in
Earth observation.

Many efforts have been devoted to exploring more effi-
cient transmission mechanisms to address the above prob-
lems. Designing better routing strategies for LEO satellite

This work is supported by National Natural Science Foundation of China
(No.62171072, No.U23A20275).

constellations is one of the most direct ways to optimize the
transmission throughput and delay [3], [4]. However, such
approaches can not essentially reduce the volume of data to be
transmitted and are struggling to keep pace with the surging
increase in earth observation data. With the development of
onboard computing capabilities, it is promising to reduce the
data transmission burden by processing data onboard before
transmitting [5]. For example, data can be compressed onboard
to reduce the required transmission bandwidth. Also, tasks
such as object detection and disaster forecasting [6] only
need to transmit a few bytes of results after being processed
onboard. Therefore, routing and onboard processing (i.e., com-
puting) can be considered jointly to improve the transmission
of Earth observation data.

However, joint computing and routing in LEO satellite
networks face three primary challenges. First, high dynamic
environment. Frequent topology changes due to high-speed
movements, solar influences [7], and variant traffic distribution
necessitating real-time decision-making. Second, uneven dis-
tribution of resources. Limited and varied onboard computing
capabilities may require offloading data to other satellites for
processing, influencing routing decisions based on computing
capacity. Third, high complexity in joint optimization.
LEO satellite constellation comprises hundreds of satellites
with high-dimensional state space. At the same time, the
joint decision of backhaul destination, computing satellite, and
transmission paths leads to high-dimensional action space.

To address these problems, we propose a DRL based
distributed optimization algorithm, to improve the transmission
efficiency of Earth observation data by regulating the comput-
ing and routing in LEO satellite constellations jointly. Given
the high complexity and high dynamics of the LEO satellite
network, a Dueling-DDQN algorithm is proposed to obtain the
joint strategies for the computing and routing of observation
tasks under limited satellite storage. Extensive experiments
are carried out, showing that the proposed algorithm can
outperform the baseline algorithms. The main contributions
of this paper are as follows:

1) Propose a distributed dueling double deep Q-Network
(Dueling-DDQN) algorithm to obtain the joint deci-
sion of computing and routing. The joint optimization
problem is modeled as a partially observable Markov
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decision process (POMDP) to minimize the task delays

under storage capacity constraints, and Dueling-DDQN

is employed to solve the optimization problem, which

can cope with the issues of high computational complex-

ity and enable dynamic decision-making utilizing local

observation.

2) Propose a method for dynamic optimization of backhaul

destinations, using the pre-trained Q-network to esti-

mate action values across multiple candidate destination

satellites. By selecting the action with the highest value

estimation among different destinations, this method

achieves further optimization of data transmission with-

out additional training.

3) Develop a system-level simulation environment to model

the satellite observation task at the constellation scale.

Different algorithms are evaluated under varying traf-

fic loads. Simulation results show that the proposed

algorithm has significant advantages in average delay

compared to baseline algorithms.

II. RELATED WORKS

A. Routing Strategies for LEO Satellite Networks

Many routing strategies have been proposed to optimize data

transmission on satellites. Tang et al. [3] proposed source-

based and destination-based multipath cooperative routing

algorithms to deliver data flow along multiple paths dy-

namically. In [8], routing schemes using a time-aggregated

graph (TAG) were proposed to guarantee service transmission

QoS. Additionally, work in [4] presented a load-balanced

collaborative offloading (LBCO) strategy for balanced traffic

distribution in data offloading. These centralized approaches

rely on global information from LEO networks, which is

not always suitable for LEO satellite networks due to their

extensive communication overhead and delay.

Researchers have devised distributed methods to overcome

the limitations inherent in centralized approaches. Zhang et al.

[9] represented satellite networks as grid graphs, utilizing their

unique topology to enhance distributed resource awareness.

Study in [10], [11] introduced distributed routing algorithms

based on DRL, where every satellite represents an agent

observing information within single-hop neighbors.

B. Computing and Transmission Joint Optimization

Some existing works investigated the computing and trans-

mission joint optimization for satellite networks. Work in [12]

investigated scenarios where satellites offer task processing

capabilities to remote Internet of Things (IoT) devices and

formulate an energy-efficient computation offloading and re-

source allocation algorithm. The study in [13] formulated a

stochastic computation offloading problem to jointly optimize

communication and computing resource allocation and compu-

tation offloading decisions and proposed a method combining

deep reinforcement learning and Lyapunov optimization to

solve this problem. In [14], an intelligent computing offload-

ing scheme based on the deep deterministic policy gradient

Fig. 1. The scenario of an observation task to be computed onboard and
transmitted back to the ground.

(DDPG) is proposed to allocate computing and transmission

resources.

These studies optimized the allocation of various resources.

However, they primarily focused on terrestrial tasks and only

considered satellites providing offloading services for their

coverage areas, neglecting the allocation challenges of onboard

computing tasks at the scale of the entire constellation.

III. SYSTEM MODEL

A. Network Model

A constellation of LEO satellites forms a network with a

bidirectional graph structure G = {V,E}, where V denotes

the set of satellites and E the active inter-satellite links (ISLs).

V = {v1, v2, ..., vN} represent the satellites, with each satellite

vi characterized by its state at any time t as computing capacity

ci in floating point operations per second (FLOPs), occupied

storage mi(t), and queue length for computing tasks qci (t).
The edges E comprise directed ISLs between satellites.

An edge ei,j ∈ E represents a directed link from vi to vj ,

characterized at time t by the link rate ri,j , transmission queue

length qti,j , and delay Di,j(t).

B. Task Model

Observation tasks for processing and transmission in LEO

satellites are described by a tuple (s, d, s′), where s is the

initial data size, d is the computational demand, and s′ is the

post-processing data size.

These tasks can be divided into two primary categories:

compression and inference. Compression tasks focus on re-

ducing the raw data size and generally require lower com-

putational power. The compressed data s′ is significantly

reduced in volume and will be transmitted to ground stations.

Inference tasks involve applying machine learning models for

target recognition or disaster detection functions, demanding

higher computational resources. The results of inference s′ are

minimal, often at most a few kilobytes.

C. Delay Model

As shown in Fig. 1, assuming a observation task is gen-

erated at v1, with the destination satellite being vn, the
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pre-computation transmission path P1 = {v1, ..., vk}, the
computing satellite being vk, the backhaul path being P2 =
{vk, ..., vn}, the task arrival time at each satellites are t1,
t2, ..., tk−1, tk+1, ..., tn excluding the computing satellite
vk, tk represent the time when the task finishes computation
at satellite vk, and t′k is the time when the task arrive vk.
Assuming the speed of light is ν. Thus, the task process
involves four types of delays in the system:

Propagation delay Tp, which is primarily determined by
the distance of each link:

Tp =
n−1∑
i=1

Di,i+1(ti)

ν
+

Dg
n(tn)

ν
(1)

where Dg
n represents the distance from vn to the connected

ground station.
Transmission delay Tt, which is determined by the task

data volume and link rate:

Tt =
k−1∑
i=1

s

ri,i+1
+

n−1∑
i=k

s′

ri,i+1
(2)

Queuing delay Tq , which includes queuing delays for both
computing and transmission, determined by the transmission
queue of each link and the computing queue:

Tq =
n−1∑
i=1

qti,i+1(ti)

ri,i+1
+

qck(t
′
k)

ck
+

qgn(tn)

rgn
(3)

where rgn represents the downlink rate from vn to the ground
station and qgn(tn) represents the queue length of downlink in
vn at time tn.

Computing delay Tc, which is determined by the com-
putation requirements of the task and the satellite computing
capacity:

Tc =
d

cvk

(4)

D. Problem Formulation

In the transmission of observation tasks, we aim to allocate
transmission paths P1, P2 and the computing satellite vk under
the constraint of storage capacities, minimizing the overall
task delay as much as possible. Therefore, the problem can
be formulated as follows:

min
P1={v1,...,vk},
P2={vk,...,vn}

n−1∑
i=1

Di,i+1(ti)

ν
+

Dg
n(tn)

ν
+

k−1∑
i=1

s

ri,i+1
+

d

ck

+
n−1∑
i=k

s′

ri,i+1
+

n−1∑
i=1

qti,i+1(ti)

ri,i+1
+

qck(t
′
k)

ck
+

qgn(tn)

rgn

s.t. v1, v2, . . . , vk ∈ {vi | mi(ti) + s ≤M},
vk+1, . . . , vn ∈ {vi | mi(ti) + s′ ≤M},
vn ∈ {vi | Dg

i (ti) ≤ Dmax}
(5)

These constraints specify that using storage mi(t) on
satellites vi along the transmission paths must not exceed
the maximum storage resource value M . Additionally, the
destination satellite vn must be within the coverage area of
any ground station. Dmax represents the maximum allowable
distance for the satellite-to-ground link, calculated based on
the orbital altitude and the beam coverage angle.

IV. DEEP REINFORCEMENT LEARNING FOR JOINT
COMPUTING AND ROUTING

A DRL algorithm is proposed to address the issue of
distributed decision-making for joint computing and routing
in complex satellite networks. Given the inherent limitations
in obtaining complete system information in satellite networks,
the POMDP framework is employed for dynamic optimization
under conditions of partial visibility.

A. POMDP

1) State Space: When a task arrives, the task information St

and local resource information Sr along with the destination
state Sd will serve as input state to the DRL agent, i.e., S =
{Sr, St, Sd}.

• The resource state Sr can be represented by resource
information of the current satellite and neighbors. Sr =
{mi(t), q

c
i (t), C,M,E}, where mi(t) represents the oc-

cupied storage of current satellite, qci (t) represents the
total computing requirement in the computing queue of
the current satellite. C = {qcη1

(t), ..., qcηK
(t)} represents

computing state of neighbor satellites(in our experiment,
K=4). M = {mη1

(t), ...,mηK
(t)} represents occupied

storage of neighbor satellite. E = {qti,η1
(t), ..., qti,ηK

(t)}
is the length of transmission queue towards neighbor
satellites. All these values are normalized to their respec-
tive maximums. When the number of neighbors is less
than K, the missing positions are filled with a value of
1, signifying that the link in that direction is unreachable.

• The task state St = {s, d, s′, xc}, where s is the data
size of the task, d is computation demand, s′ is post-
computation data size, and xc is a binary variable indi-
cating whether the task has been computed.

• The destination direction state Sd = {lη1
, ..., lηK

}, where
lηj represents the hops from the jth neighbor to the des-
tination satellite, normalized by dividing by the diameter
of the network graph. If the number of neighbors is less
than K, the gaps are filled with a value of 2, indicating
that the link in that direction is unreachable.

2) Action Space: The action space can be represented as
A = {Aη1 , ..., AηK

, Ac}, where Aηj denotes pushing the task
to the transmission queue towards the jth neighbor, and Ac

denotes pushing the task to the computing queue of the current
satellite.

3) Reward: The reward function R for task allocation in
satellite networks is defined based on various conditions to
optimize task efficacy while minimizing delays and resource

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on November 30,2024 at 10:35:07 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Dueling-DDQN-based joint optimization of computing and routing
for LEO satellites in training.

usage. Each condition is associated with a specific trans-

mission or processing event, with corresponding rewards or

penalties:

1) When the task reaches the destination ground station,

the reward is calculated as:

R =

{
βs + βd · (tb − tτ ), if xc = 1

βd · (tb − tτ ), if xc = 0
(6)

where xc donates whether the task is computed. βs is

the reward for successful transmission, and βd is the

delay penalty. Here, tb is the task start time, and tτ is

the current decision time.

2) When packet loss occurs during transmission. The re-

ward is:

R = −βl + βd · (tb − tτ ), (7)

where βl is the penalty for packet loss.

3) For a normal one-step transition:

R =

{
βd · (tL − tτ ), if mi < mr

−βm + βd · (tb − tτ ), if mi >= mr

(8)

where mr is the reserved storage space. tL representing

the time at the last decision step, βm is the penalty for

exceeding the storage threshold.

These conditions collectively aim to ensure that tasks are

processed and transmitted efficiently while managing the lim-

ited resources of satellite networks effectively. In our experi-

ment, βs, βd, βl, and βm are 1, 0.05, 1, and 0.25, respectively.

B. Dueling-DDQN

DDQN [15] represents a notable technique in deep rein-

forcement learning aimed at addressing the overestimation

issue prevalent in traditional Q-learning algorithms through

the introduction of dual Q-networks. Dueling architecture

further enhances this approach by decomposing the Q-value

into separate estimations of the state-value and advantage

functions, enabling more robust policy learning and improved

performance [16].

As shown in Fig. 2, the core framework of Dueling-DDQN

comprises two main components: an online network Q for

selecting optimal actions and a target network Q′ for evalu-

ating these actions. Both networks have the same structure,

consisting of some hidden layers to extract features from the

state S, followed by two streams: one for estimating the state-

value function V (S) and another for estimating the advantage

function A(S,A). The Q-value is then computed by combining

these two streams as follows:

Q(S,A) = V (S) +

(
A(S,A)− 1

|A|
∑
A′∈A

A(S,A′)

)
(9)

where |A| denotes the number of possible actions.

The online network Q selects actions A based on the current

state of the environment S and updates its parameters every

step to adapt to environmental changes rapidly. In contrast, the

target network Q′ updates its parameters at a lower frequency

to maintain stability in the learning process.

The target value y is calculated using the target network Q′.
For each experience tuple (S,A,R, S′), the target value y is

defined as the current reward R(S,A) plus the product of the

discount factor γ and the predicted value of target network Q′

for the next state S′ and best next action A′. Specifically, γ is

a value between 0 and 1 that determines the degree to which

the algorithm prioritizes short-term versus long-term rewards.

A lower value of γ makes the agent emphasize immediate

rewards more, whereas a higher value encourages the agent to

consider long-term rewards in the future. This is expressed as:

y = R(S,A) + γ · max
A′∈A

(Q′(S′, A′, θ′)) (10)

where θ′ represents the weights of target network Q′.
The loss function L(θ) is defined based on the temporal

difference loss, measuring the difference between the predicted

value of the online network and the target value. Where θ
represents the weights of the online network Q. It is defined

as:

L(θ) = [y −Q(S,A, θ)]2 (11)

Minimizing this loss function allows Dueling-DDQN to learn

the optimal policy effectively.

The parameters of the online network are updated using

gradient descent to minimize the loss function. The formula

for updating is:

θ = θ − α · ∇θL(θ) (12)

Where α is the learning rate, and ∇θL(θ) represents the

gradient of the loss function concerning the parameters of

the online network. During the update process, the algorithm

computes the gradient of the loss function concerning the
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Algorithm 1 Dueling-DDQN for joint optimization of com-
puting and routing

1: Initialization:
Initialize Q(θ) with random weights and copy them to
Q′(θ′). Establish replay buffer B and set initial explo-
ration probability ϵ.

2: for each training epoch do
3: Reset the initial state S0 and set marker p = 0
4: for each task within the epoch do
5: while task not completed or lost do
6: if a sampled probability is less than ϵ then
7: Select an action Ap randomly
8: else
9: Select Ap that maximizes Q(Sp, Ap, θ)

10: end if
11: Execute Ap, observe Sp+1 and Rp

12: Store (Sp, Ap, RpSp+1) in the replay buffer B
13: p← p+ 1
14: end while
15: end for
16: for each training iteration do
17: Sample a batch of experiences from B
18: y = R(S,A) + γ ·maxA′∈A(Q′(S′, A′, θ′))
19: Calculate L(θ) = [y − (Q(S,A, θ))]2

20: Update weights of network θ ← θ −∇θL(θ)
21: end for
22: Update exploration probability ϵ
23: if current epoch is a multiple of the target update period

then
24: Copy parameters from the online network Q(θ) to

the target network Q′(θ′)
25: end if
26: end for
27: Store the parameters of Q(θ)

parameters of the online network and adjusts them accordingly
to optimize the action selection.

C. Optimization of Destination Satellite Selection Based on
Q-Network for Data Backhaul

Unlike regular data transmission tasks, the backhaul ground
station and the destination satellite for observation data are
changeable. Observation data can be transmitted to any ground
destination and subsequently uploaded to cloud servers. Due
to the high-dimensional and highly dynamic nature of satellite
networks, optimizing the choice of return ground stations and
destination satellites becomes a complex problem. Given local
resource status information, task information, and destination
direction information, the pre-trained Q-network of Dueling-
DDQN can be used to estimate the action-value function.
Although the task destination is the satellite nearest to the
ground station during training, tasks with different destinations
can also be estimated by the Q-network using relative direction
information in the inference stage.

Online network Q

0.9 0.87 0.4 0.51

0.72 0.92 0.5 0.46

0.6 0.7 0.53 0.75

0.3

0.3

0.24

Action 1 Action 2 Action 3 Action 4 Action 5

Destination 
1

Destination  
2

Destination  
3

Action-value table

Task 
state

Local
resource
state

Destination state 1

Destination state 2

Destination state 3

Batched input states with different 
destinations

Fig. 3. During inference, the nearest satellites within the coverage of ground
stations will be selected as candidate destinations. The direction information
of these destination satellites will be encoded and concatenated with the
resource state and task state to form a batched input for Q-network. An action-
value table for different destinations and actions will be generated, where the
destination and action corresponding to the highest value will be adopted.

Since the predictability of satellite trajectories, any satellite
can compute the current coverage relationship between other
satellites and ground stations locally. Thus, as shown in Fig. 3,
it is possible to consider different destination satellites and
select the best action corresponding to the highest estimated
value from all candidate destination satellites as the next action
choice. This enables dynamic optimization selection of the
destination satellite. Then, the optimized action:

A∗ = arg max
S∈S,A∈A

Q(S,A, θ) (13)

where S denotes the state set with different candidate desti-
nation satellites.

V. SIMULATION RESULTS AND ANALYSIS

A. Experiment Setup

To evaluate the performance of different algorithms in
the LEO satellite constellation, a system-level simulator is
developed in Python. The discrete event library SimPy is used
to build computing and transmission queues. Skyfield is used
for satellite ephemeris calculations. The DRL network was
constructed using PyTorch.

Table I lists the configurations of constellation parameters,
satellite resources, and tasks used in the simulation. Owing
to the high computation cost and runtime in constellation-
scale simulation, a low storage resource limit (1.5GB) was
adopted. This approach was employed to evaluate the storage
resource planning capability of the algorithm in an acceptable
simulation time. Eleven ground stations were adopted world-
wide. The arrival time of observation tasks follows a Poisson
distribution, and the duration time follows an exponential
distribution.

B. Comparing Algorithms

The proposed algorithm is in comparison with two other
algorithms:
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TABLE I
CONFIGURATION OF SIMULATION ENVIRONMENT

Parameter Value
Number of orbital planes 12

Number of satellites per plane 24
Orbital altitude 500 km

Orbital inclination 60°
Beam coverage angle 45°

Data size per task 25-75 MB
Compression ratio 9-11

Computation demand for compression 1200-2000 FLOP/Byte
The data size of inference output 5 KB

Computation demand for inference 2400-4000 FLOP/Byte
Link failure rate 2.6%

ISL transmission rate 1.2 Gbps
Downlink transmission rate 3 Gbps

Onboard computing capacity 50 GFLOPS
Satellite storage limit 1.5 GB

Learning rate (α) 0.0002
TD target decay (γ) 0.99

Size of experience replay buffer 500000
Size of mini-batch 1024

Fig. 4. Average reward changing curve during DRL training.

• Proximal Policy Optimization (PPO) [17]. A DRL algo-

rithm based on the Actor-Critic architecture and policy

optimization methods. It improves performance by iter-

atively updating the policy and value function using a

clipped objective function to maintain stable learning,

prevent large policy updates, and ensure efficient explo-

ration and exploitation.

• Ideal centralized solution (ICS). The centralized approach

adopts the algorithm proposed in [18], which plans rout-

ing as an optimal algorithm that searches for all feasi-

ble solutions. The global information used for decision-

making in this algorithm was obtained instantly from the

simulator, ignoring all latencies in information updates.

C. Rewards in DRL Training

As shown in Fig. 4, the Dueling-DDQN algorithm exhibited

a significantly faster convergence speed in the early training

stages than the PPO and DDQN algorithms. After reward

convergence, the rewards of the three algorithms were close,

Fig. 5. Comparison of average delay for different algorithms under various
traffic loads.

Fig. 6. Comparison of packet loss rate for different algorithms under various
traffic loads.

with Duelin-DDQN being slightly higher than those of DDQN

and exhibiting much less fluctuation than the PPO algorithm.

The Dueling-DDQN demonstrated the fastest convergence

speed and the best training performance.

D. Comparison of Average Delay

Fig. 5 illustrates the variation of average task delay with

traffic load. Dueling-DDQN+ is the algorithm that optimizes

the destination dynamically. All three distributed DRL al-

gorithms showed a slight increase in average delay with

increasing traffic load, while the centralized algorithm showed

a significant increase. This is primarily because distributed

algorithms can achieve dynamic decision-making based on

real-time network states, making them more adaptable to the

highly dynamic satellite network environment. In contrast, the

centralized algorithm makes only a single decision per task,

and as the load increases, the decision delay effect becomes

more pronounced. The Dueling-DDQN+ algorithm, optimized

for destination satellite selection, exhibited the lowest task
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TABLE II
LOCATIONS OF GROUND STATIONS IN SIMULATION

City Latitude (°) Longitude (°)
Dubai 25.252 55.280
Harbin 45.750 126.650
Istanbul 41.019 28.965
Jakarta -6.174 106.829
Karachi 24.867 67.050
Moscow 55.752 37.616
Nairobi -1.283 36.817
Sanya 18.243 109.505

Shanghai 31.109 121.368
Urumqi 43.800 87.583

Xian 34.258 108.929

delay, and its advantage over other algorithms became more
evident with increasing traffic load.

E. Comparison of Packet Loss Rate

Fig. 6 shows the packet loss rate variation with traffic load.
The ICS had a packet loss rate of 4% to 6%, indicating that
centralized methods are less capable of handling link failures
and sudden traffic bursts. The packet loss rates of the three
distributed DRL methods were almost identical, remaining
below 1%, indicating that DRL can adapt well to network
dynamics within the network load capacity, and increasing the
load does not cause an increase in the packet loss rate.

VI. CONCLUSION

This paper investigates a distributed strategy towards joint
optimization of computing and routing in the LEO satellite
constellation based on DRL. A Dueling-DDQN method is
proposed to achieve minimal task delay under storage lim-
itations. Simulation results demonstrate the applicability of
the proposed algorithm, where the overall delay and packet
loss can be reduced compared to the centralized method over
different traffic loads.

VII. APPENDIX

The locations of the ground stations used in our simulations
are detailed in Table II.
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