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Abstract—In multibeam satellite (MBS) systems, a joint op-
timization algorithm is proposed to tackle the challenges of
beam hopping and time-frequency-space resource allocation. The
method aims to reduce the supply-demand gap between ground
service communication needs and the capacity provided by the
beams, while ensuring the quality of ground service communi-
cation. This enhances the efficiency of satellite communication
systems. Firstly, from the perspective of time-frequency-space
interference isolation, multidimensional resources are designed.
Bandwidth resources are partitioned and power resources are
allocated based on demand. The multidimensional resource
allocation problem is formalized as a multi-objective optimization
problem to maximize system throughput and minimize the
supply-demand gap. Secondly, by representing the state of the
MBS as a multidimensional matrix and considering dynamic
service demands, the target problem is modeled as a Markov
decision process. Finally, a deep reinforcement learning algorithm
is employed to solve the joint optimization problem of satellite
beam hopping scheduling and multidimensional resource alloca-
tion. Simulation results show that the algorithm improves system
average throughput by approximately 3–59% and reduces the
supply-demand gap by about 49–66%.

Index Terms—Multibeam satellite, beam hopping, time-
frequency-space resources, supply-demand gap

I. INTRODUCTION

In recent years, the resource allocation optimization problem
of multibeam satellite systems (MBS) has become a major
research hotspot in the field of space communication tech-
nology due to the rapid growth in the demand for satellite
communication services and the scarcity of satellite commu-
nication resources. The power of each beam are coupled with
each other, and the bandwidth power allocation is constrained

*The corresponding author is Jiangtao Luo.
*This work was supported by the National Natural Science Foundation of

China (No.U23A20275, 62171072, 62172064, 62003067), and the Natural
Science Foundation of Chongqing (cstc2021jcyj-msxmX0586).

by the total resources of the satellite payload, so the joint
bandwidth and power allocation problem of MBS is a key
issue to be considered [1], [2]. Therefore, it is particularly
important to target time-frequency-space resource allocation
to meet the operational requirements and improve resource
utilization.

Research on the optimization of resource allocation in
MBS can currently be divided into two directions: single-
objective optimization and multi-objective optimization. For
single-objective optimization, Han et al. in [3] proposed a
beam hopping resource allocation algorithm based on deep
reinforcement learning with the objective of minimizing trans-
mission delay in MBS, but without considering optimal band-
width allocation. Wang et al. in [4] proposed an offline beam
hopping resource allocation algorithm based on maximizing
the total system throughput, which requires predicting future
channel information, making it difficult to implement in prac-
tice. Guo et al. in [5] proposed three user selection schemes
and an accumulated delay-aware power allocation algorithm
with the objective of minimizing the maximum queueing delay
between users. Zhang et al. in [6] studied resource allocation
in low Earth orbit (LEO) satellite systems based on beam
hopping with the objective of maximizing cell throughput.
It decomposed the resource allocation problem into time
slot allocation sub-problems and transmit power optimization
(TPO) sub-problems, solving the TPO sub-problem using
convex optimization theory. Xu et al. in [7] proposed a deep
reinforcement learning-based algorithm to maximize system
throughput, which flexibly utilizes three degrees of freedom:
time, space, and beam coverage radius, but does not fully
utilize frequency resources. For multi-objective optimization,
Lin et al. in [8] proposed a joint beam hopping mode and
bandwidth allocation scheme to increase data throughput while
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reducing latency. However, this approach does not involve
power, which is a critical resource in MBS.

The above studies have not fully considered frequency allo-
cation, and the existing algorithms ignore long-term benefits
and are weakly adaptable. In order to improve the performance
of MBS, it is necessary to fully optimize beam hopping,
power and bandwidth. However, this increases the search
space and leads to “dimensional disaster”. Therefore, resource
optimization algorithms with high adaptability and learning
capability are urgently needed to improve throughput and
reduce the supply-demand gap.

To address the above issues, this paper proposes a deep
reinforcement learning-based joint optimization algorithm for
beam hopping and resource allocation (D-BHRA), which
aims to rationally allocate power and bandwidth resources of
satellite beams to maximize throughput and reduce the supply-
demand gap, while achieving spatial interference isolation.

The contributions of this paper are summarized as follows:
• We propose an allocation scheme for multidimensional

resources considering time, frequency, and space aspects,
leading to improvements in energy efficiency and isola-
tion of spatial interference.

• We incorporate the supply-demand gap into the model
for the first time, which improves the energy efficiency
and fairness.

• The experimental results illustrates that compared with
the baseline algorithm, the D-BHRA significantly im-
proves throughput and reduces the supply-demand gap by
about 8.77% and 66.16%, respectively, when compared
with greedy-based beam hopping and resource allocation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This paper addresses a satellite operating in the Ka band
and orbiting in geostationary Earth orbit (GEO) [9], with
the system model shown in Fig. 1. It is assumed that the
satellite carries K controllable multibeam antennas and one
fixed signal antenna. For the forward link, the multibeam
satellite system provides K beams to cover N cells, with
the satellite carrying a buffer to record the communication
demands of each cell. The K beams serve the N cells in a
time-division multiplexing manner, where the multibeam an-
tennas can adjust their pointing and transmission power in real-
time, and the fixed signal antenna is used for receiving ground
communication demands and channel state information. The
system link adopts a Gaussian white noise channel.

The satellite beam refers to the signal transmitted by the
satellite’s onboard transmitter, denoted as K = {k|k =
1, 2, ...,K}. This paper divides the entire area covered by
the satellite into multiple equally sized cells, denoted as
N = {n|n = 1, 2, ..., N}, satisfying K ≪ N . The number
of data packets requested by cell n at time t is ϕn

t , and the
total number of data packets requested by all cells at time t
can be represented as Λt = [ϕn

t |n = 1, 2, .., N ]. The vector of
data packets awaiting service in the buffer for cell n at time

Fig. 1. Based on beam hopping satellite communication architecture.

t is represented as ET
t,n = [ϕn

t,l|l = 0, 1, ..., lth+1], and the
matrix of data packets cached in the buffer is represented as
Φt = [Et,1,Et,2, ...,Et,N ]. Here, l is the queueing delay of
the data packet, and lth is the maximum allowable data packet
queueing delay. If the data packet queueing delay exceeds
the maximum allowable delay, i.e., l = lth+1, the buffer will
discard the unsent data request. The number of data packets
awaiting service in cell n at time t is represented as λn

t ,
λn
t =

∑l=lth
l=0 ϕt,l.

The total bandwidth of the satellite is denoted as Btot,
which is divided into M frequency blocks. Therefore, the
bandwidth of each frequency block is Bblock = Btot/M .
In this paper, it is assumed that each beam can only be
assigned contiguous frequency blocks. Based on the number
and location of occupied contiguous blocks, there are a total
of M(M+1)

2 available bandwidth allocation schemes. When
bandwidth blocks assigned to different beams overlap, this
results in co-channel interference in the overlapping frequency
bands. Referring to [8], the overlap factor αi,j

t =
Bi

t∩B
j
t

|Bi
t|

is
defined to represent the co-channel interference from beam i
to beam j within time slot t, where Bi

t denotes the frequency
block used by beam i in time slot t.
Ptot represents the maximum available transmission power

of the satellite system, and the maximum transmission power
that can be carried by a single beam is Pmax.

According to ITU-R S.672-4 standard, the downlink path
loss H = {hn,k|n ∈ N , k ∈ K}from the satellite transmitter
to the user receiver can be calculated by [10]:

H = Θ ·GU ·GB (1)

where Θ = diag{σ1, σ2, ..., σN} represents the channel gain
matrix; GB = {gbn,k|n ∈ N , k ∈ K} represents the
transmit antenna gain matrix from beams to cells; GU =
diag{gu1 , gu2 , ..., guN} represents the receive antenna gain matrix
for the corresponding N cells. Therefore, when beam k serves
cell n, the signal-to-noise ratio (SNR) of that cell is given by:

Γn,k
t =

hn,k · P k
t

|Bk
t |BblockN0 +

∑
i∈K,i̸=n hn,i · αi,j

t · P i
t

(2)

where hn,k ∈ H denotes the loss from beam k to cell n; P k
t

is the transmit power of beam k at moment t; Bk
t denotes

the bandwidth allocation scheme used for beam k at moment
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t; and N0 is the power spectral density of the noise. The
channel capacity can be obtained from the DVB-S2 standard
as follows:

Cn,k
t = xn,k

t ·Bk
t · fDV B−S2X(Γn,k

t ) (3)

where xn,k
t denotes whether beam k covers cell n; fDVB−S2X

is the performance mapping function [11]. The channel capac-
ity of cell n at time t is Cn

t =
∑K

k=1 C
n,k
t . From the above,

the actual amount of data transmitted by cell n in time slot t
is Πn

t = min {Cn
t , λ

n
t }.

B. Problem Formulation

In this paper, we aim to dynamically select the beam
hopping and power bandwidth allocation strategies to meet the
dynamic service demands of the ground, while maximizing the
system throughput and reducing the supply-demand gap.

In order to measure the degree of matching between the
resources supplied by the satellite and the demand of the cell,
this paper defines the supply-demand gap δn,kt as follows:

δn,k
t = |Cn,k

t −Dn,k
t | (4)

where Cn,k
t denotes the communication capacity allocated to

cell n by beam k at moment t, and Dn,k
t denotes the commu-

nication capacity demanded by cell n when it is illuminated
by satellite beam k at moment t. The smaller supply-demand
gap is, the better the matching between the communication
demand of the ground cell and the transmission capacity of
the beam is.

In order to maximize the data throughput while reducing
the supply-demand gap, this paper defines system utility P is:

P = ω

∑N
n=1 Π

n
t

Πt,max
− (1− ω)

∑N
n=1

∑K
k=1 δ

n,k
t

δt,max
, ω ∈ [0, 1] (5)

where ω denotes a predetermined weight to achieve a trade-off
between throughput and supply-demand gap; Πt,max denotes
the maximum value of throughput among all cells at decision
time slot t; and δt,max denotes the maximum value of supply-
demand gap between satellites and cells at decision time slot
t.

Based on the optimization objective in Eq. (5), this paper
establishes a dynamic beam-hopping multi-objective optimiza-
tion problem, which can be modeled as:

max P

s.t. C1 :
∑K

k=1 Pk ≤ Ptot

C2 : Pk ≤ Pmax

C3 : |Bk
t |Bblock ≤ Btot

C4 : Bk
t = 1, 2, ..., M(M+1)

2 ,∀k ∈ K

(6)

where C1 means that the sum of the assigned powers of the
individual beams is less than the total transmit power; C2
means that the assigned powers of the individual beams must
not exceed the maximum transmit power of the individual
beams; C3 implies that the sum of the bandwidths assigned to
all the beams is less than the total bandwidth; and C4 implies
that the bandwidths of the beams are selected for each of the
beams from M(M + 1)/2 bandwidth assignment schemes.

III. THE PROPOSED D-BHRA ALGORITHM

The framework of the joint optimization algorithm for satel-
lite beam hopping and power bandwidth allocation based on
D-BHRA is shown in Fig. 2. The action space of this algorithm
consists of two parts, which on one hand is responsible for
specifying the cell that will be covered by the beam, and on the
other hand allocating the transmission power and bandwidth
for the beam. When making a decision, the satellite will
select the action with the highest probability among them for
execution based on the probability values of a set of different
actions. After executing an action, the satellite jumps from
the current state to the next state and receives a reward value
reflecting the effect of the action. This section describes how to
optimize this decision-making strategy using the MDP model
and the D-BHRA algorithm.

A. MDP Model

The communication capacity demand requested by the same
cell follows the first-arrival-first-transmission model, so the
packet matrix Φt recorded in the satellite buffer at moment t
is affected by Φt−1 at moment t−1, and also the packet matrix
Φt is affected by the action at−1 of the beam at moment t−1
and by the packet arrivals Λt. Therefore, the packet matrix
can be constructed as:

Φt = Φt−1 + Λt − at−1 · Ct−1 (7)

Define state si ∈ S, action ai ∈ A, transfer probability
p(si|si, ai) ∈ P and reward ri. The details are shown below:

State Space: The state space is composed of two aspects.
On the one hand, the matrix of packets to be served recorded in
the satellite cache is used as a constituent of the state space,
the matrix of packets being packets requested by individual
cells over a period of time and not served at moment t. On
the other hand, the demand of individual cells is also used as
a constituent of the state space. The state space st is:

st = [Φt,Dt] (8)

where Φt denotes the number of unserved packets cached in
the queue at the moment t; Dt denotes the communication
capacity demanded by each cell at the moment t.

Action Space: The action space consists of three aspects.
On the one hand is the coverage strategy of the satellite
beam hopping, which itself is the selection of the cells to
be covered by the beams, i.e., xn,k

t ∈ (x1,k
t , x2,k

t , ..., xN,k
t ).

If beam k covers cell n at moment t then xn,k
t = 1. On

the one hand is the power allocation strategy, which allocates
the transmission power of the satellite assigned to the beams
according to the cell demand, i.e., Pk ∈ (ℓ1, ℓ2, ..., ℓN ). On the
other hand the bandwidth allocation strategy, which divides
the bandwidth resource into M blocks of frequencies, i.e.,
Bk = 1, 2, ..., M(M+1)

2 . The action space at is:
at = {Xt,Pt,Bt} (9)

where Xt denotes the coverage strategy of the satellite beam
hopping at moment t; Pt denotes the transmission power
strategy assigned to the beam by the satellite at moment t;
and Bt denotes the bandwidth strategy assigned to the beam
by the satellite at moment t.
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Fig. 2. Framework of the D-BHRA.

Reward function: In D-BHRA, the optimization objective
is to maximize the system throughput and minimize the
supply-demand gap. Therefore, the reward function is specified
as:

rt = ω

∑N
n=1 Π

n
t

Πt,max
− (1− ω)

∑N
n=1

∑K
k=1 δ

n,k
t

δt,max
(10)

where ω is the weighting factor.

B. D-BHRA Algorithm Network Structure

This section describes the D-BHRA algorithm in terms of
Deep Q-network (DQN) structure and training.

DQN structure: Since the action space defined in Eq. (9) is
discrete, this paper uses the DQN learning method [12], which
uses satellites as the main body of the intelligent’s learning
strategy. By training the convolutional neural network, the
optimal action value function can be obtained, and from this,
the objective value of the optimal policy network is derived
as follows:

Q∗(s, a) = max
π

E[rt + γrr+1 + ...|st = s, at = a, π] (11)

where γ is the discount factor.
DQN training: The use of convolutional neural network

to approximate the Q-value function may face the problems
of overestimation, instability and even divergence. The D-
BHRA algorithm employs a dual network technique, i.e.,
the strategy network Q∗ and the target network Q−, which
enhances the stability and reliability of DQN training by
periodically updating the target network parameters. Mean-
while, the memory replay technique is introduced to store and
utilize previous experiences to improve sampling efficiency
and learning robustness. The algorithm randomly extracts the
experience terms from the cache and calculates the target
value according to the Bellman equation, which effectively
solves the overestimation and instability problems of DQN.
The target value is calculated as follows:

yt = rt + γmaxQ−(ss+1, a; θ
−) (12)

where θ− is the parameter of the target network, which is
updated with the policy network parameter θ every G steps.
Based on the target value in Q∗, the loss value Lt(θt) of the
network at time t is:

Lt(θt) = E(st,at,rt,st+1)∼U(R)(yt −Q∗(s, a; θt))
2 (13)

where θt is the policy network parameter at moment t.

C. D-BHRA Algorithm Steps and Process
The basic steps of the D-BHRA algorithm proposed in this

paper are shown in Algorithm 1.

Algorithm 1 The training of D-BHRA
Input: States st
Output: Actions at

Initialize cell communication demands Dt, delay tolerance matrix Φt.
Initialize replay buffer R, exploration parameter ϵ, minibatch size B.
Initialize target network Q− with weights θ− ← θ.
for episode = 1 to episodemax do

Collect current satellite state st.
for k = 1 to K do

Determine the action ak,t according to the satellite state st.
end for
Get all beam actions at = (a1,t, ..., aK,t).
Allocate power and frequency blocks according to at.
Calculate the reward rt and get next real state st+1.
Store transition (st, at, rt, st+1) in R.
Samples a mini-batch of (si, ai, ri, si+1) from R and calculates the loss

Lt(θt).
Train the Q-network.
Update the target network θ− of agent every G steps.

end for

IV. EVALUATION

In this section, we describe the experiment setup and
analyze the experimental results.

A. Experiment Setup
The simulations were performed based on the Python 3.10

platform, and all simulations were performed on AMD Ryzen
7 4800H, 16 GB RAM, and Radeon Graphics. In a simulation
scenario of a GEO multibeam satellite operating in Ka band
GEO, this paper creates 30 ground communities in the system,
with each satellite carrying 7 beams. Table I summarizes the
simulation parameters of the system and algorithm [7].

The communication demand required by the terrestrial base
station follows a Poisson distribution with parameter µ = 1.
During training, the demand for a single cell is controlled to
be between 0 and 30 Mbps. During testing, the service demand
of individual cells and the total service demand of each cell
are varied. The statistical average of 300 test results is taken
as the evaluation metric in this paper.
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TABLE I
THE SETTING OF EXPERIMENTAL PARAMETERS

PARAMETERS VALUES
Satellite altitude h 36786 km

Ka Band fc 20 GHz
Total available bandwidth Btot 18000 KHz

Total satellite power Ptot 23 dBW
Single-beam power threshold Pmax 20 dBW

Number of beams K 7
Number of cells N 30

Maximum transmit antenna gain Gm 40.3 dBi
Free space loss Lf 209.6 dB

Maximum receiving antenna gain Gr 31.6 dBi
Replay memory capacity R 100000

Minibatch size B 128
Discount factor γ 0.9

Target network update frequency G 100
Learning rate α 0.0001

B. Performance Metrics

To evaluate the performance of D-BHRA algorithm, the
following performance evaluation metrics are defined in this
paper:
• System throughput: the total number of packets transmit-

ted by the system per unit time.
• Supply-demand gap: the absolute value of the commu-

nication capacity provided by the illumination of the
satellite beam and the demand of the cell.

• Delay: the sum of queuing delay and propagation delay
of packets in the cache queue.

To verify the impact of the proposed D-BHRA algorithm on
the performance of multibeam satellite systems, we compare
the proposed method with different schemes as follows:
• Greedy-Based Beam Hopping and Resource Allocation

(G-BHRA) [14]: each decision time slot and the algo-
rithm selects the seven cells with the highest cell demand
for service and uses a fixed allocation power of 20W and
a bandwidth of 18000KHz.

• Genetic Algorithm-Based Beam Hopping and Resource
Allocation (GA-BHRA) [10]: candidate solutions evolve
as individuals. Through selection, crossover, and muta-
tion, less fit solutions are eliminated until the most fit
solution is selected.

• Polling-Based Beam Hopping and Resource Allocation
(P-BHRA) [7]: according to the order of cell location,
each decision time slot selects 7 cells in turn for beam
coverage and allocates transmission power in proportion
to demand.

C. Results Analysis

In order to assess the effectiveness of the proposed al-
gorithm, the convergence process of the algorithm is firstly
demonstrated and analyzed for the convergence process of the
algorithm, as shown in Fig. 3. The convergence process of
the target reward value of the D-BHRA algorithm can be seen
that the horizontal coordinate is the number of iterations, and
the vertical coordinate is the normalized reward value, and
the normalized reward value tends to be stable and finally

converges better when trained up to 10,000 episodes, whose
reward value is the normalized value of system throughput and
supply-demand gap.
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Fig. 3. The normalized reward value.
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Fig. 5. The packet loss rate and delay of D-BHRA.

Fig. 4 shows the system throughput in the same decision
time slot for three scenarios in an environment with a total
demand of 100 Mbps for service communities. Case 1: When
only considering throughput, the system prioritizes maximiz-
ing throughput, with the highest throughput in any decision
time slot. During simulation, ω is set to 1; Case 2: When
only considering the supply-demand gap, the system prioritizes
minimizing the supply-demand gap, resulting in the lowest
throughput in any decision time slot. During simulation, ω
is set to 0; Case 3: Taking into account both maximizing
throughput and minimizing supply-demand gap, the algorithm
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proposed in this article can better balance system throughput
in this regard. Compared to the situation where only supply-
demand gap exist, the throughput has increased by about
8.33%. Fig. 5 shows the delay and packet loss rate of the
system under three demands; as the demand of the served cell
increases, both the delay and packet loss rate increase.
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Fig. 6. Performance comparison in terms of system throughput.
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Fig. 7. Performance comparison in terms of supply-demand gap.

As shown in Fig. 6, the proposed algorithm in this paper
improves the average throughput of the system by 8.77%,
10.51%, and 59.36% compared with G-BHRA, GA-BHRA,
and P-BHRA. D-BHRA has a better performance in terms
of average throughput mainly because D-BHRA consolidates
the remaining resources and divides them to other cells twice
when serving the cells with less demand, whereas G-BHRA
focuses on finding the cell with the highest demand for service
and ignores the secondary allocation of resources, resulting
in a waste of resources. As shown in Fig. 7, D-BHRA has
lower supply-demand gap and is better able to provide more
satisfactory services to the ground cells, and the mean supply-
demand gap is reduced by about 66.16%, 58.28%, and 49.58%
compared with G-BHRA, GA-BHRA, and P-BHRA. The main
reason is that D-BHRA adds the supply-demand gap in the
decision making, when the cell demand is less the same
will be served, while other algorithms ignore this. Hence, D-
BHRA has better system throughput while taking into account
minimizing the supply-demand gap.

V. CONCLUSION

In this paper, we propose a novel joint beam hopping satel-
lite scheduling and time-frequency-space resource allocation

algorithm oriented to dynamic service demands for efficient
allocation of multidimensional resources in multibeam satellite
systems. In the proposed algorithm, the multidimensional re-
sources are firstly designed in terms of time-frequency block-
space interference isolation and optimized by joint beam hop-
ping. The algorithm is modeled as a multi-objective optimiza-
tion problem aiming to maximize the system throughput and
minimize the supply-demand gap. The experimental results
show that D-BHRA can achieve higher system throughput
with the lowest supply-demand gap compared to the baseline
algorithm.
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