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Abstract—The Low Earth Orbit (LEO) satellite constellation
has been recognized as an important component of the future 6G
network. Due to the high speed movement and limited on-board
energy of LEO satellites, as well as the uneven distribution of
service requests on the ground, it is difficult to achieve optimal
satellite communication performance using a static inter-satellite
links (ISLs) scheme and a fixed transmission power per link.
To solve this problem, this paper proposes a joint optimization
algorithm based on parameterized deep reinforcement learning
(named DeepISL) for dynamic planning of ISLs between different
planes and transmit power allocation per link. First, a partially
observable Markov decision process (POMDP) is established
by modeling the communication, energy, and overall energy
efficiency as well as the antenna steering costs. Second, to
solve the hybrid action space problem with discrete action
variables for ISL planning and continuous action variables
for power allocation, deep multi-agent reinforcement learning
with parameterized action space is used to obtain the optimal
joint strategy. Finally, extensive experiments illustrate that our
proposed algorithm can improve the energy efficiency of the
constellation by 4.2% ∼ 10.5% compared to the comparison
algorithms, and can also achieve better performance in terms
of throughput and ISLs switching ratio.

Index Terms—LEO satellite, inter-satellite-link planning,
power allocation, parameterized deep reinforcement learning.

I. INTRODUCTION

The Low Earth Orbit (LEO) satellite constellation is an
emerging and promising technology to provide broadband
communications, low latency services and global coverage for
ground users [1]. In order to provide efficient communication
among users in different satellite coverage areas without the
relay of any ground station, inter-satellite links (ISLs) are
usually established between satellites. However, because of the
high-speed motion of satellites, inter-plane ISLs connecting
satellites at different orbits cannot be maintained for a long
time and need to be regulated and switched dynamically
according to the real-time satellite constellation states. At the
same time, a high transmission power for an ISL usually
can achieve a higher data transmission rate, but the available
energy of a satellite is limited. Therefore, it is critical to
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jointly plan the inter-plane ISLs and regulate their the power
allocation with the aim of improving the performance of the
LEO satellite networks.

However, it is challenging to achieve the above objective
due to the dynamic environmental states of the LEO satellite
constellation. First, there are a large number of satellites
in the LEO constellation, and each satellite has a group of
neighboring satellites used to build ISLs, training a large
amount of data can have a negative impact, which leads to the
“curse of dimensionality”. Second, there may exist “switching
conflicts” when one satellite switches its inter-plane ISL from
one connected satellite to other candidate satellites. If more
than one satellites from the same orbit require to establish an
ISL with the same satellite at the adjacent orbit, the “switching
conflicts” will occur. Third, the joint optimization of planning
the inter-plane ISLs and regulating their the power allocation
will encounter the issue of hybrid action space, because
planning ISLs is a discrete action while power allocation is
a continuous action. The joint optimization algorithm should
well deal with the issues of hybrid action space.

Currently, most existing works focus only on the dynamic
planning of inter-plane ISLs without considering the power
allocation of the ISLs. The greedy matching algorithm is
proposed in [2], which selects the inter-plane ISL with the
highest throughput and tends to result in poor energy effi-
ciency. Finite state automation (FSA) is used to model ISLs
in [3] and solve inter-plane ISLs planning based on integer
linear programming (ILP), but this requires a large amount
of computation. A multi-agent deep reinforcement learning
scheme is proposed in [4], which enables optimal planning
decisions for ISLs. The ISLs assignment problem is treated
as a general graph matching by [5], and the ISLs assign-
ment strategy is established based on Signed Variance and
Blossom algorithm. Although the above-mentioned algorithms
can achieve a matching strategy with excellent performance of
ISLs, they fail to consider the dynamic power allocation, and
thus cannot flexibly switch ISLs and allocate power according
to the actual amount of data.

To solve the above problem, we propose a joint optimization
algorithm for ISLs planning and power allocation based on
parameterized deep reinforcement learning, named DeepISL.
In this algorithm, each agent makes decisions based on its own
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observations and is trained with its own information. After the
algorithm converges, each agent can make optimal decisions.
Our major contributions are summarized below:

• The joint optimization problem is formulated as a par-
tially observable Markov decision process (POMDP)
since each satellite can only observe partial information
of the satellite constellation. To avoid “curse of dimen-
sionality”, we train the algorithm orbit-by-orbit and a
“switching conflicts” penalty mechanism is designed to
weigh the decisions between satellites.

• We propose a parametrized Deep Q-Network (P-DQN)
based algorithm to solve joint optimization problem with
a hybrid discrete-continuous action space, where ISLs
planning is a discrete action and power allocation is a
continuous action.

• Extensive experiments are carried out and the results
show that the DeepISL can improve the energy efficiency
of the LEO constellation while increasing the throughput
and reducing the ISL switching ratio.

II. RELATED WORK

In this section, we review the recent research on dynamic
planning and power allocation of inter-plane ISLs.

A. Dynamic Planning for Inter-Plane ISLs

Most research algorithms on dynamic planning of ISLs
focus on heuristic algorithms, linear integer programming
algorithms and deep reinforcement learning. In [2], a greedy
matching algorithm is proposed to build inter-plane ISLs with
the objective of maximizing the throughput. The heuristic-
based algorithm is easy to implement, but it tends to result
in poor energy efficiency. Yan et al. [3] modeled the network
of ISLs with finite state automation (FSA) and solved the plan-
ning problem of inter-plane ISLs based on integer linear pro-
gramming (ILP), however, this algorithm is extremely complex
and unsuitable for high-dimensional satellite constellations. To
solve the problem of high complexity, Pi et al. [4] proposed
an approach based on multi-agent deep reinforcement learning
to train the algorithm orbit by orbit.

The existing approaches mentioned above can partially
handle with the dynamic characteristics of the LEO satellite
constellations and improve the performance of ISLs, but
almost all of them fail to take into account the dynamic power
allocation, thus they cannot effectively and flexibly achieve the
ISL switching and power allocation according to the actual
data transmission demands.

B. Dynamic Power Allocation for Inter-Plane ISLs

The dynamic power allocation of inter-plane ISLs can
flexibly regulate the power according to actual service demand
to achieve the purpose of saving energy. To optimize the
communication quality, Jia et al. [6] designed an MRR-ANC
(modified retro reflectors-analog network coding) system in
two way relay channel(TWRC) and proposed a power alloca-
tion scheme to maximize throughput. Chen et al. [7] studied
the optimal power control problem for spectrum sharing in
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Fig. 1: LEO satellite constellation topology and decision network

cognitive satellite-terrestrial networks(CSTNs) and solved the
proposed power control problem by a game theoretic approach
to maximize the throughput.

The purpose of the above methods is to maximize through-
put without taking into account energy efficiency, which may
lead to over-allocation of power, resulting in a waste of power
resources.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Architecture

As shown in Fig. 1, we consider a polar orbit constellation.
The satellite constellation has N satellites and M orbital
planes, with Nm satellites uniformly distributed on each orbital
plane m ∈ {1, ...M} at an inclination ϵm, and the altitude of
m is H . For a satellite u, we define its Cartesian coordinates
as (xu, yu, zu) and the orbital plane it is located in as mu. At
any time, the constellation can be represented as an undirected
graph g = (V,E), where V denotes the set of vertices
(satellites), E denotes the set of edges (ISLs), and euv denotes
the link between satellite u and satellite v.

B. Communication Model

We define the source-target satellites u and v as the
satellite pair uv. For satellite u, we define the plane
((mu + 1) mod M) as its positive side plane and the plane
on the other side as its negative side plane. Herein we assume
that each satellite can keep two intra-plane ISLs and two
inter-plane ISLs. The intra-plane ISLs of a satellite connect
neighboring satellites within the same orbital plane, while the
inter-plane ISLs of a satellite connect neighboring satellites
from the adjacent orbital planes.

For the satellite pair uv, the line-of-sight (LoS) distance
between satellite u and satellite v is [2]

l|uv| = 2
√

H (H + 2RE) , (1)

where RE denotes the radius of the Earth, H is the altitude
of orbital planes. And the Euclidean distance can be written
as

d|uv| =

√
(xu − xv)

2 + (yu − yv)
2 + (zu − zv)

2. (2)
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If inter-plane ISL can be established between satellite pairs uv,
we call such a satellite pair as eligible satellite pair. However,
some satellite pairs are unable to establish inter-plane ISL
because their LoS is sheltered by the Earth, and such a satellite
pair is defined as d|uv| > l|uv|.

The region between 1-st and M -th orbital planes is called
“Seam”. The satellites in the 1-st and M -th orbital planes
move in opposite directions with very high velocities. There-
fore, it is extremely challenging to maintain inter-plane ISLs in
the “Seam” region, and the establishment of inter-plane ISLs
across “Seam” will not be considered in this paper. Then, the
set of eligible satellite pairs can be expressed as [4]

Y =
{
uv : mu −mv /∈ {0,M − 1} and d|uv| < l|uv|

}
. (3)

Since satellites communicate in a free-space environment,
satellites communication is mainly affected by free-space path
loss (FSPL) and additive white Gaussian noise (AWGN). For
a eligible satellite pair uv, FSPL is defined as

Luv =
[(
4πd|uv|f

)
/c
]2

, (4)

where f denotes the carrier frequency and c denotes the speed
of light. The SNR between satellite pair of uv is

SNRuv =
PtranGtranGrec

kBTeBLuv
, (5)

where Ptran is the transmitted power, kB is the Boltzmann
constant, Te is the thermal noise in Kelvin, and B is the
channel bandwidth, Gtran and Grec are the gain of the
transmitter antenna and receiver antenna, respectively.

In this paper, we assumed that the satellites have enough
narrow antenna beams with accurate beam alignment. As a
result, the satellites can communicate in an interference-free
environment. The maximum communication rate between an
eligible satellite pair of uv is

Reuv = B log2 (1 + SNRuv). (6)

C. Energy Model

We assume that the system is time-slotted, the duration of
the time slot is δ, the t-th time slot is denoted as δ(t) and a
satellite period has Nd time slots. The solar panels equipped
on the satellite collect energy from the solar radiation when the
satellite is in sunlight and the energy consumed by the satellite
is preferentially extracted from the collected energy. However,
when the satellite is on the backside, the satellite cannot collect
energy because the Earth shields it from the sun’s rays, and
the consumed energy needs to be extracted from the battery.
We express the power of the energy collected by the satellite
u for the t-th time slot as [8]

Pharvest
u,t = τ · φ ·ϖ ·Ae · sinσ, (7)

where τ denotes the energy collection constant, τ = 1 when
the satellite is on the sunny side and τ = 0 when the satellite
is on the backside, φ denotes the energy conversion efficiency
of the solar panel to convert solar energy into electrical energy,
ϖ is the solar irradiation per unit area, Ae is the area of the
solar panel, and σ denotes the angle between the solar panel
and the sunlight. The energy collected by the satellite u for
the t-th time slot can be expressed as

Eharvest
u,t = Pharvest

u,t · δ(t). (8)

For the entire satellite period, we assume that the maximum
capacity of the battery of satellite u is Cmax

u and the upper
limit of allocated power is Pmax

u . For the t-th time slot, the
energy of satellite u at the beginning of the time slot is Cu,t,
the maximum real-time distributable power Pmax

u,t is

Pmax
u,t =

{
min (Cu,t/δ(t), P

max
u ) , τ = 0

min
(
Pharvest
u,t + Cu,t/δ(t), P

max
u

)
, τ = 1

. (9)

Assuming that the total power allocated to the intra-plane ISLs
and other operation is P0, the power allocated by satellite u to
the inter-plane ISL in its positive side plane direction is Peuv,t,
the total power allocated by satellite u can be expressed as

P consume
u,t = Peuv,t + P0 ≤ Pmax

u,t . (10)

Therefore, the energy consumed by the satellite u is
Econsume

u,t = Pu,t · δ(t). (11)
Then, the difference between the energy collected and

the energy consumed during δ(t) is δ (Eu,t) = Eharvest
u,t −

Econsume
u,t . Thus, the capacity of the battery of the (t + 1)-th

time slot is [9]

Cu,t+1 =

{
min (Cu,t + δ (Eu,t) , C

max
u ) , δ (Eu,t) > 0

max (Cu,t + δ (Eu,t) , 0) , δ (Eu,t) < 0
(12)

D. Energy Efficiency Model

In order to reasonably allocate the power for satellites, we
introduce energy efficiency in this paper. For the t-th time
slot, we assume that the number of packet arrivals at satellite
u obeys a Poisson distribution with mean ρ, the size of each
packet is Ff . The amount of data arriving at satellite u is ωu,t,
and the amount of data actually sent by satellite u to satellite
v is ωeuv,t, the energy efficiency of euv is defined as

Euv
eff,t = ωeuv,t/Eeuv,t = Reuv,t/Peuv,t, (13)

where Eeuv,t denote the energy consumed during δ(t), Reuv,t

is communication rate and Peuv,t is the transmitted power.
In addition, the communication rate of each inter-plane ISL

must be doubly constrained in order to transmit most of the
data and to avoid wasting energy by communicating at a rate
that exceeds the service requirements. This constraint is

λωu,t/δ(t) ≤ Reuv,t ≤ ωu,t/δ(t), (14)

where λ is the satisfaction factor.

E. Antenna Steering Cost Model
In this paper, we estimate the antenna steering cost by an-

tenna steering angle, the antenna steering angle for switching
the inter-plane ISL of satellite u from v1 to v2 is

θu = arccos

((
d|uv1|

)2
+
(
d|uv2|

)2 − (d|v1v2|)2
2 · d|uv1| · d|uv2|

)
. (15)

To calculate the antenna steering cost of inter-plane ISLs, we
define the average antenna steering angle θ̂u for each satellite
u. For the t-th time slot, θ̂u,t is defined as [4]

θ̂u,t =

∑
v1 ̸=v2∈Y +

u,t

θu +
∑

v1 ̸=v2∈Y −
u,t

θu(
N+

u,t
2

)
+

(
N−

u,t
2

) , (16)

where Y +
u,t and Y −

u,t represent the set of satellites v that satisfy
the condition uv ∈ Yt in the positive and negative side planes
of the satellite u, respectively, Yt is the set of eligible satellite
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pairs for the t-th time slot. And N+
u,t, N−

u,t represent the
number of eligible satellite pairs in sets Y +

u,t and Y −
u,t.

For the t-th time slot, in order to establish the inter-plane
ISL euv , we define the antenna steering angle as

θuv,t =

{
0 , euv ∈ Et−1

θ̂u,t + θ̂v,t , euv /∈ Et−1
. (17)

where Et denotes the set of ISLs at the t-th time slot.

F. Problem Formulation

To improve energy efficiency and throughput and reduce
ISLs switching costs, we need to make decisions about inter-
plane ISLs planning and power allocation. For the t-th time
slot, we define the utility function φ (t) as

φ (t) =
∑
euv

(
α1E

uv
eff,t + α2Reuv,t

)
−

∑
euv

α3θuv,t. (18)

where α1, α2 and α3 are weight factors. Thus, the optimization
problem can be formulated as maximizing the utility of the
satellite network as follow

max

Nd∑
t=1

φ (t)

s.t.


uv ∈ Yt

euv ∈ Et

λωu,t/δ(t) ≤ Reuv,t ≤ ωu,t/δ(t)
Peuv,t ≤ Pmax

u,t − P0

α1, α2, α3

.

(19)

IV. THE PROPOSED DEEPISL ALGORITHM

This section introduces the deep reinforcement learning
model and the DeepISL algorithm.

A. DRL Model

In this paper, we propose the DeepISL algorithm to address
the problem of joint optimization of inter-plane ISLs planning
and power allocation. To prevent the “curse of dimensionality”,
we train algorithm orbit-by-orbit. Each satellite actively de-
cides to establish ISLs with satellites in the positive side plane,
and passively accepts requests to establish ISLs with satellites
from the negative side plane. Due to the “Seam” issue, there
is no need for satellites in the M -th plane to establish ISLs.
So all satellites are independent agents except the satellites in
the M -th plane. Then, we define the state space, action space
and reward function for each agent.

State Space. For the t-th time slot, we define Di,t is the
set of distances between satellite ui and the satellites in the
positive side plane within its LoS, Ci,t denotes the battery
energy state of satellite ui, and ωi,t is the amount of data to
be sent by satellite ui to its positive side plane. Then the state
space of agent i is Si,t = {Di,t, Ci,t, ωi,t}.

Action Space. For agent i, we treat the ISLs planning as
discrete actions vi,t and pi,t represents the assigned power,
then the decision action can be defined as ai,t = (vi,t, pi,t).
All possible ai,t form the action space of agent i.

Reward. Since all agents cooperate to maximize the same
optimization objective, we define the reward as

∑Nn

i=1 = ri,t

, Nn = N − Nm represents the number of satellites except
the M -th orbital plane and ri,t represents the contribution of
agent i, expressed as

ri,t = κi

(
α1E

ivi,t
eff,t + α2Reivi,t,t

)
− α3θivi,t,t. (20)

In addition, we designed a “switching conflicts” resolution
mechanism during the training process, aiming to align the
reward according to the conflict. The conflict factor κi = 1
for the agents that have no “switching conflicts”. For the agents
that have “switching conflicts”, if the weighted sum of energy
efficiency and throughput of the inter-plane ISL established
with the target satellite is greater than that all other agents,
then κi = 0.6, otherwise κi = 0.05. The reward will finally
guide all agents to make rational decisions.

B. The Proposed DeepISL Algorithm
Since the action space is discrete-continuous hybrid action

space, DQN and DDPG are suitable for the problems of
discrete and continuous actions, respectively, we introduce the
parameterized action space, which is rewritten as [10]

Ai,t =
{(

vi,t, pvi,t
)
|vi,t ∈ Vi,t, pvi,t ∈ PVi,t

}
, (21)

where Vi,t is the set of satellites in the positive side plane
within its LoS, PVi,t

denotes the power assigned to the ISLs.
Once agent i selects action ai,t =

(
vi,t, pvi,t

)
∈
(
Vi,t, PVi,t

)
,

agent i will establish an inter-plane ISL with the target satellite
vi,t and assign transmission power pvi,t to the established ISL.

For each agent i, we denote the action value function as
Qi (si, ai) = Qi (si, vi, pvi). Assuming that agent i selects
action ai,t =

(
vi,t, pvi,t

)
at state si,t, the Bellman equation is

Q(si,t, vi,t, pvi,t) =

E

[
ri,t + γ max

vi,t∈Vi,t

sup
pvi,t∈PVi,t

Q (si,t+1, vi, pvi) |si,t = si

]
,

(22)

when the Q function is fixed, for any given vi,
xQ
vi(S) = arg sup

pvi,t∈PVi,t

Q (si, vi, pvi) (23)

is a function of the state si. Therefore, we use a deep neural
network Qi

(
si,t, vi,t, pvi,t ;wi

)
with network weight wi to

approximate Q (si, vi, pvi
) and a deterministic policy network

µvi (si,t; θi) with parameter θi to approximate xQ
vi . In other

words, when wi is fixed, we want to find θi which satisfies
Qi (si,t, vi,t, µvi (si,t; θi) ;wi) ≈ sup

pvi,t∈PVi,t

Q (si, vi, pvi ;wi) .

(24)Similar to DQN, network parameters wi are updated with
the gradients of the least squares loss function. In addition, to
find θi that maximizes Qi (si, vi, µvi (si; θi) ;wi) when wi is
fixed, set the loss functions of wi and θi as

ℓt (wi) =
1

2

[
yi,t −Q

(
si,t, vi, pvi,t ;wi,t

)]2
, (25)

ℓt (θi) = −
∑

vi∈Vi

Q (si,t, vi, pvi (si,t; θi) ;wi,t) , (26)

where yi,t is the target value, expressed as
yi,t = ri,t + γ max

vi∈Vi

Q (si,t+1, vi, µvi (si,t+1; θi) ;wi,t) . (27)

Then, wi and θi can be updated by the following equation
wi,t+1 ← wi,t − α∇wiℓt (wi,t) (28)
θi,t+1 ← θi,t − β∇θiℓt (θi,t) . (29)

where α and β are the learning rates.
The pseudo-code of training DeepISL algorithm is shown

in Algorithm 1, where the initialization and training processes
are the same for each agent.
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Algorithm 1: Training process of DeepISL
1 for agent i = 1, Nn do
2 Initialize deterministic strategy network µvi (θi) and

value network Qi (wi), learning rate α,β and
probability ξ . Initialize the experience pool Γ

3 end
4 for episode = 1 to M ′ do
5 for agent i = 1, Nn do
6 Observe the state si,t
7 Obtain continuous parameter pvi,t ← µvi

(θi).
8 Obtain discrete action by

vi,t = argmaxvi∈ViQ (si,t, (Vi, pVi) ;wi)
9 Select action ai,t according to ξ-greedy strategy

10 Execute ai,t and observe ri,t and si,t+1

11 Store transition [si,t, si,t+1, ai,t, ri,t] into Γ
12 end
13 end
14 for agent i = 1, Nn do
15 Randomly draw a batch of [sb, sb+1, ab, rb]b∈B̄ from Γ

yb = rb + γmaxv∈V Q
(
sb+1, v, µvi

(sb+1; θt) ;wt

)
Calculate ℓt (wi) and ℓt (θi) according to Equations
(25) and (26)

16 Update the network parameters wi and θi according to
Equations (28) and (29)

17 end

V. EXPERIMENT AND ANALYSIS

A. Simulation Setup

In this paper, we use Python 3.9.15 and Pytorch 1.10.0 to
build a simulation platform and conduct simulation experi-
ments to verify the feasibility and effectiveness of the proposed
algorithm. In our experiments, we set up the neural network
of µvi (θi) and Qi (wi) to contain two fully connected hidden
layers with 64 neurons and ‘ReLU’ was used as the activation
function. For each time slot, the number of packet arrivals
for each satellite obeys a Poisson distribution with mean ρ.
To reflect the performance of different transmission demands,
the value of ρ will be in the range of 350k − 600k, but to
simulate communication scenarios with different transmission
demands, the value of ρ will be controlled. The main simula-
tion parameters of the system are given in Table I.

B. Performance Metrics and Comparison Algorithms

Performance Metrics: 1) Mean energy effciency of ISL:
The ratio of the sum of the energy efficiency of each inter-
plane ISL to the total number of inter-plane ISLs. 2) Mean
throughtput of ISL: The ratio of the sum of the throughput of
each inter-plane ISL to the total number of inter-plane ISLs. 3)
Inter-plane ISLs Switching ratio: The ratio of switched inter-
plane ISLs to the total inter-plane ISLs.

Comparison Algorithms: 1) GIEM: A dynamic inter-plane
ISL planning algorithm based on greedy algorithm with a fixed
allocation of transmission power[11]. 2) DY-DQN: Relaxation
of continuous action into discrete actions, dynamic planning
of ISLs and dynamic allocation of transmission power. 3) FP-
DQN: An algorithm for dynamically planning inter-plane ISL
based on DQN with a fixed allocation of transmission power.

TABLE I: PARAMETER SETTINGS FOR EVALUATION

Parameter Symbol Value

Number of satellites N 66
Number of orbital planes M 6
Altitude of orbital planes H 780 Km
Inclination of orbital planes ϵm 86.4 deg
Carrier frequency in the Ka-band f 23.28 GHz
Carrier bandwidth B 15 MHz
Quality factors Grec/Te 8 dB/K
The size of each packet Ff 1500B
The duration of the time slot δ(t) 300 s
Number of inter-plane transceivers Q 2
Satisfaction factor λ {0.85, 0.9, 0.95}
Probability of greedy strategy ξ 0.8
Size of the Mini-batch B̄ 1024
Capacity of the experience memory Memory 10000
Lerning rate α,β 0.0095
Discount factor γ 0.95
Weight factors α1,α2,α3 1, 0.1, 1

C. Experiment Results and Analysis

1) Convergence graph analysis: Fig. 2 represents the re-
ward convergence diagram for ρ = 400k, 500k, 600k and
λ = 0.9. It can be seen that at the early stage of training, the
decision of the satellite isn’t optimal because the parameters
of the neural network are randomly generated, but after
the neural network continuously learns and updates its own
parameters, the algorithm basically reaches convergence after
15000 training period.

2) Algorithm Comparison Analysis: Fig. 3 shows that the
energy efficiency of ISL decreases and the magnitude of
decrease grows as the ρ rises. Compared with the comparison
algorithm, DeepISL has the best energy efficiency perfor-
mance. Since the DY-DQN algorithm slackens the continuous
action, while the FP-DQN algorithm adopts a fixed power
allocation scheme, both fail to obtain the optimal solution.
Meanwhile, GIEM disregards energy efficiency and selects
the ISL with the highest throughput, it has the worst energy
efficiency performance. Due to the limited energy resources
of the satellite, the energy efficiency remains stable after
the ρ reaches 550k. Fig. 4 shows that as the ρ rises, the
throughput of the satellite increases, but the magnitude of the
increase is diminished. The DeepISL algorithm outperforms
DY-DQN and FP-DQN due to the fact that DY-DQN and FP-
DQN cannot obtain the optimal solution. However, DeepISL
is slightly inferior to GIEM due to the fact that the GIEM
algorithm selects the ISL with the highest throughput, while
DeepISL still has to consider the energy efficiency and the
switching cost of the ISL. In addition, the throughput remains
almost constant after the ρ reaches 550k due to the limited
energy of the satellite. Fig. 5 illustrates the ISLs switching
ratio achieved with four algorithms respectively. We can find
that all three algorithms, DeepISL, DY-DQN and FP-DQN,
perform closely to each other. This is because in all three
algorithms, the ISLs switching cost is considered. Since the
GIEM algorithm selects the inter-plane ISL with the highest
throughput and without considering the switching cost of ISL,
the GIEM algorithm has the poorest performance.
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Fig. 2: Agents average reward after
40000 episodes while λ = 0.9
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Fig. 3: Mean energy effciency of IS
while λ = 0.9
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while λ = 0.9
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Fig. 5: Inter-plane ISLs Switching
ratio while λ = 0.9
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with ρ = 500k

3) Sensitivity Analysis: Fig. 6 demonstrates that the mean
energy effciency of ISL achieved by DeepISL shows an
decrease as the λ grows. As the λ grows, satellites need
to allocate higher power, but the percentage increase in
throughput is less than the percentage increase in power, so
energy efficiency decreases as the λ grows with increasing
magnitude. Fig. 7 shows that throughput increases as the λ
grows. As λ increases, it will lead to a sharp decrease in
energy efficiency, therefore, the magnitude of the throughput
increasing decreases in order to obtain a higher reward. Fig.
8 demonstrates that the ISL switching ratio is highest at
λ = 0.9. This is because the performance of energy efficiency
is sacrificed for low ISL switching ratio at λ = 0.95, while the
throughput property is sacrificed at λ = 0.85. The respective
performance is well-balanced at λ = 0.9.

VI. CONCLUSION

In this paper, we investigated the joint optimization problem
of inter-plane ISLs planning and power allocation in the
LEO constellation to improve weighted benefits of overall
energy efficiency and total throughput of the constellation
while reducing the cost of switching ISLs. To achieve this
goal, we model the optimization objective as a POMDP, and a
DeepISL algorithm is employed to obtain the optimal decision
since joint optimization is a discrete-continuous hybrid action
space problem. Experimental results show that compared with
the comparison algorithms, our proposed DeepISL algorithm
can achieve better performance.
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