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Abstract—Video services such as short video sharing have
exploded due to the rapid development of Internet social media
platforms. Caching video segments on satellites effectively short-
ens service delay and speeds up video sharing, especially for users
without terrestrial Internet access. However, where to place what
video and how to replace it in time is by no means an easy task,
requiring careful consideration of many factors, e.g., satellite
coverage, video popularity, and limited caching resource. In this
paper, we propose a coverage-aware cooperative video caching
algorithm (CACVC) that considers the prevalence of video in the
coverage area and the collaboration between adjacent satellites.
In CACVC, we model the cache placement problem of video as
a Partially Observable Markov Decision Process (POMDP) to
optimize the service delay of video provided by access satellites,
neighboring satellites, or ground stations. We derive the optimal
cache strategy by utilizing Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm with a centralized training and
distributed execution paradigm. Simulation results show that the
cache hit ratio can be improved by 4%∼18%, and the average
service delay can be reduced by 1%∼14%.

Index Terms—Cooperative Caching, Multi-Agent System, Deep
Reinforcement Learning, Satellites Network, Delivery Delay

I. INTRODUCTION

Satellite networks are widely considered a powerful sup-

plement to existing terrestrial mobile communication networks

due to the global coverage, seamless access, and infrastructure-

free features [1]. Compared with traditional medium and

high orbit satellites, low-earth orbit (LEO) satellites have

a shorter service delay, lower signal attenuation, and lower

operation and maintenance costs [2–4]. With the development

of intelligent mobile devices, the demand for low-latency

mobile applications and multimedia services has increased

significantly. According to Cisco’s VNI report [5], IP video

traffic will quadruple by 2022, accounting for 82% of total IP

traffic. As a solution to this global traffic growth, LEO satellite

caching is considered a promising approach. By pre-caching

popular videos on LEO satellites, ground user terminals (UTs)

can retrieve their requested videos mainly from the cached
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videos, significantly reducing repetitive video traffic and video

service delay.

Although caching on LEO satellites has been widely used,

besides the limited cache capacity of satellites, the high-speed

movement of satellites imposes additional challenges to the

design of a caching strategy for LEO satellites. First, satellites’

coverage areas and access users are constantly changing,

leading to dynamic video popularity and frequent replacement

of cached videos. Second, the same video segments are

repeatedly cached between satellites, resulting in low cache

space utilization within the satellite constellation. The cache

policy needs to dynamically decide which videos need to be

cached and where the selected videos are cached (e.g., access

satellite or neighbor satellite) by using the dynamics of cache

space and video popularity. Third, large-scale constellations

and large amounts of video will result in high computation

and communication cost problems.

Several studies have begun considering caching schemes

on satellites to overcome these obstacles [6–11]. By caching

popular content favored by users on the satellite, the op-

timized caching strategy is adopted to improve the service

performance of the satellite in different scenarios and achieve

more efficient content distribution in the satellite network. In

a single satellite scene design [6–8], the content transmission

is usually interrupted due to the satellite’s movement. A cache

placement scheme for multiple LEO satellites is proposed in

[9–11]. These proposals, however, only focus on the optimal

placement of cache contents at a specific time, and there is

not enough cooperation between satellites, resulting in poor

cache space utilization.

In order to address the issues mentioned above, we pro-

pose a coverage-aware cooperative video caching algorithm

(CACVC) based on Multi-Agent Deep Reinforcement Learn-

ing (MADRL) [12] to optimize the video average service

delay. We firstly formulate a Partially Observable Markov

Decision Process (POMDP) model by designing state space,

action space, and reward function according to video request,

video cache, video popularity, and video transmission delay

within the streets of coverage (SOC). Then, we utilize Multi-

Agent Deep Deterministic Policy Gradient (MADDPG) to find

the optimal caching strategy. MADDPG works in a centralized

training and decentralized execution paradigm. Each agent978-1-6654-3540-6/22 c© 2022 IEEE
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makes actions based on its local observations and is trained

with all the agents’ observations and actions. Our main con-

tributions are summarized as follows:

• We devise a statistical model of video popularity based

on SOC for our cooperative caching problem, where

the access users in SOC are relatively fixed, which is

beneficial for learning users’ preferences.

• We formulate the cooperative caching problem as a

POMDP-based multi-agent decision problem maximizing

the cumulative reward for all satellite caches. This formu-

lation ensures caching collaboration among satellites by

optimizing the service delay of cached video from access

satellites, cached video from neighboring satellites, and

ground stations (GSs).

• Compared with baseline caching strategies, the proposed

CACVC algorithm, according to simulation results, can

reduce 1%∼4% of the video average delivery delay and

improve the 4%∼18% hit ratio.

The remainder section of this paper is arranged as follows.

Section II summarizes the work related to satellite caching.

In Section III, the system model and problem formulation are

presented. The details of our proposed CACVC are described

in Section IV. In addition, the evaluation results are detailed

within Section V. Finally, the conclusion and future work are

explained in Section VI.

II. RELATED WORK

In recent years, existing LEO satellite caching strategies can

be roughly categorized into single and Multiple satellites.

The first type is a caching strategy that considers only

caching multimedia content on a single satellite. Zhong et al.

[6] researched Quality of Experience (QoE)-driven placement

optimization of video stream caching by considering the

required video stream transfer rate and the social relationship

between users. Han et al. [7] researched joint cache placement

and content delivery for the scenario of multiple base stations

and one satellite in a satellite-ground integrated cloud radio

access network. The cooperative caching of the Base Stations

(BSs) and the users are considered in the satellite backhaul

transmission. In [8], the authors discussed the caching problem

in the satellite-to-ground relay network.

The second type is a caching strategy that considers multiple

satellites cooperating to cache multimedia content. In [9], in

order to minimize the content access delay of user terminals,

a new caching algorithm was proposed, which optimizes the

content placement in the LEO satellite constellation network.

Qiu et al. [10] expressed the collective problem of network,

cache, and computing resource allocation as a joint optimiza-

tion problem and used the deep Q-learning method to solve the

problem in the software-defined satellite-ground network. In

[11], the satellite-ground hybrid network was used for offline

edge caching of cellular base stations to reduce the traffic on

the ground network. Nevertheless, the above works scarcely

consider the impact of changing-with-time satellite network

topology on the file distribution process, leading to updating

caching location with degraded distribution performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we discuss our system model, in particular

the service model. Then the problem formulation is given.

A. System Model

Internet

Satellite movement path interstellar link Multimedia ServerStorage resource

Fig. 1: Cooperative caching system over LEO satellite networks.

As shown in Fig. 1, a typical LEO satellite network for

video delivering comprises a set of LEO satellites n =

{1, 2, . . . N}, a number of UTs k={1, 2, . . .K} and a set of

GSs g={1, 2, . . . G}. The satellite network is deployed with

essential inter-satellite links (ISL, in the same orbital and

between orbitals) to achieve wide coverage areas and low

access latency. Each satellite has a certain storage capacity

to cache some popular videos. UTs get the requested videos

by accessing the satellites. Although the storage capacity of

a single satellite is limited, the cached videos can be shared

between satellites through inter-satellite links, which allows

us to coordinate satellites to take full advantage of the storage

capacity of satellites. Therefore, the fundamental problem is

to develop an efficient cooperative video caching strategy that

minimizes the service delay of the requested videos, which is

the optimization goal of this paper. The mathematical models

of the system mentioned above can be described as follows.

1) Coverage Model: The coverage of the satellite network

to the ground has become an essential indicator in measuring

the communication capabilities of this satellite network. Satel-

lites move according to orbits, and satellites in the same orbit

form fixed SOC during the movement, as shown in Fig. 2.

Fig. 2: The SOC of satellites.

The point set An(t) of all points within the area covered

by satellite n can be express in [13]:

An(t)={x(R,θ,Φ) |sinθsinθn cos(Φ−Φn)+cosθcosθn≤cosψ}
(1)

where R is the earth radius, Φn is the longitude of satellite

n, θn =
∣∣π
2 − nlatitude

∣∣, nlatitude is the latitude of satellite n, ψ
is the half cone angle of the covered area to the core of the

earth. x(R,θ,Φ) represents the coordinate of any node.

So the point set ASOC(t) of all points can be express in:

ASOC(t)={An(t) |n = 1, 2, . . . N} (2)
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2) Video Request Model: The UTs are uniformly distributed

in SOC. The access satellite n is requested by UT k for video

segments, so the request status can be expressed as rn(t) ={
rln,k,f (t) | n ∈ n, f ∈ f, k(R,θ,Φ) ∈ ASOC(t)

}
, k(R,θ,Φ)

denotes the coordinate of k. rln,k,f (t) = 1 indicates satellite n

receives a request f l from k; otherwise rln,k,f (t) = 0.
3) Video Caching Model: We only consider the scenario

where the UTs may receive the requested video segments

from the accessed satellite. Let F={1, · · · , f, · · · , F} denote

the set of videos requested by the UTs. All the F videos

can be retrieved from the multimedia server. Different videos

consist of different numbers of segments, each of which has

the same segment size. We assume that each satellite has

the same caching capacity. The video placement is refreshed

periodically, and the time slot is indexed by t = 0, 1, · · · . Let

cln,f (t) = 1 denote the video segment f l cached in the satellite

n. The full segments that have been cached in satellite n have

to satisfy the constraint:∑
f∈f

∑
l∈l

cln,f (t)b
l
f ≤ cn(t), ∀n ∈ N (3)

where blf is the size of video segment f l, cn(t) is the cache

state of access satellite n.
4) Popularity Model: Due to the high-speed movement of

satellites, the prevalence of video segments within satellite

coverage at different moments may exhibit geographical dif-

ferences. The access users in SOC are relatively fixed, which

is beneficial to the statistics and training of popularity. Let pn,o
denotes the popularity of the o-th video segment at satellite n,

which follows the Mandelbrot-Zipf (MZipf) distribution [14].

Thus we can get:

pn,o =
In(o)

−zn

ISOC(o)−zn
(4)

where In(o) indicates the popularity rank of the o-th video

segment at sateliite n, ISOC(o) indicates the popularity rank

of the o-th video segment at SOC, zn is a skewness factor

taking values in [0.6, 1.2].

(a)

(b)

(c)

Access satellite's cache

User downlink

User Terminal

Access SatelliteOther nearby satellites' cache 
(in the same orbit)

User downlinkInter-SatelliteLink

User Terminal

Access Satellite

User downlink

Multimedia Server

Feeder uplinkExternal link

User TerminalGround Station

Fig. 3: The service paths for different video placement.

5) Service Model: In the cooperative caching system, the

UTs’ requests may be accommodated by the GS, access

satellite, or nearby satellite, as depicted in Fig. 3, depending

on the video placements. We consider the video service delay

of UTs as the transmission delay.

Access service mode ( mac = 1) : If the requested video

segments have been cached in the access satellite, they can

be delivered to the UTs directly, as shown in Fig.3 (a). dacn (t)
indicates the video service delay, which can be calculated:

dacn (t) =
∑
k∈k

∑
f∈f

∑
l∈l

cln,f (t)r
l
n,k,f (t)b

l
f

vn,k
(5)

vn,k = Bn,k log2

(
1 +

qkgn,k
σ2 +

∑
v∈K\{k}:av=ak

qvgn,v

)
(6)

where vn,k, Bn,k indicates the video transmission rate and

channel bandwidth of satellite n to UT k, respectively. σ2

represents the background noise power, qk is the power

consumption of n transmission to k, gn,k is the channel gain.

Cooperative service mode ( mco = 1 ) : In the coopera-

tive caching system, the segments belonging to the same

video may be distributed to multiple satellites. If the access

satellite has no segments for the requested video, but nearby

satellites cached them, the UT requests can be accommodated

by sharing the video segments among those satellites. Due to

the fairly limited cache space, if a requested content segment is

fetched from a nearby satellite, it will be directly forwarded to

the UT. dcon (t) indicates the video service delay of this mode,

as shown in Fig.3 (b), which can be calculated:

dcon (t) = dacn (t) + dHn (t) (7)

where dHn (t) is the transmission delay between satellites,

dHn (t) =
∑

k∈k

∑
f∈f

∑
l∈l

Hl
n,k,f c

l
n,f (t)r

l
n,k,f (t)b

l
f

vco
. H l

n,k,f is

the number of hops between satellites when f l is sent to

k (in the coverage of satellite n). vco indicates the average

transmission rate between satellites, vco = 1
N

∑N
n=1 vn,n−1.

vn,n−1 can be calculated according to formula (6).

Source service mode ( mso = 1 ) : If the requested video

is not cached by satellites, the UT will fetch it from the GS,

as shown in Fig.3 (c). dson (t) indicates the video service delay

of this mode, which can be calculated:

dson (t) = dacn (t) +
∑
k∈k

∑
f∈f

∑
l∈l

∑
g∈g

rln,k,f (t)b
l
f

vg,n
(8)

vg,n is the transmission rate of GS g to satellite n which can

be calculated according to formula (6).

B. Problem Formulation
The satellites need to dynamically determine what video

should be replaced and where the video request should be

served during each episode to adapt to changing environments.

Our optimization goal is to minimize the average service delay

for requested videos.

davg is the average service delay of requested videos during

the T period, which can be defined as:

davg =

∑
t∈t

∑
n∈n [macdacn (t) +mcodcon (t) +msodson (t)]∑

t∈t

∑
n∈n

∑
k∈k

∑
f∈f

∑
l∈l

∣∣∣rln,k,f (t)∣∣∣
(9)

Thus, we formulate the corresponding cooperative caching

problem to minimize the objective function and obtain the

optimal control policy, which can be expressed as:



min davg

s.t. C1 : mac,mco,mso, cln,f (t), r
l
n,k,f (t) ∈ {0, 1}

C2 : mac +mco +mso = 1

C3 :
∑
f∈f

∑
l∈l

cln,f (t)b
l
f ≤ cn, ∀n, f, t, l

C4 : H ≤ vco
vg,n

, ∀n, g

(10)

where C2 guarantees that the video request can be served;

C3 ensures that the total size of video cached on the satellite

should not exceed its cache capacity.

IV. THE PROPOSED COVERAGE-AWARE COOPERATIVE

VIDEO CACHING ALGORITHM

The above optimization problem is modeled as a POMDP

[15, 16], where the information observed by each satellite is

only a partial glimpse of the constellation state. In this section,

the CACVC algorithm is proposed to solve the average service

delay optimization problem.

A. POMDP
The fact that the complete information concerning the states

is not entirely observable when making caching decisions

motivates us to formulate our caching decision problem as a

POMDP. We define the states, actions, and rewards as follows:

• State Space: At time slot t, we define the state of the

whole system is defined as:

χ(t) = (rn(t), cn(t),pn(t)) (11)

where rn(t) is the state of the request received by satellite

n, cn(t) is the video cache state. cln,f (t) = 1 means

satellite n cached f l; otherwise cln,f (t) = 0. Finally,

pn(t) is the video popularity state, pn(t) =
{
pln,f (t)

}
,

pln,f (t) is the video popularity of f l under satellite n.

• Action Space: In order to accommodate the dynamic

changes of the video popularity and satellites, each

satellite need to determine which video segments should

be replaced and where the video requests should be

served during each episode. We define three types of

actions following: access actions aac(t) =
{
aacn,f,l(t)

}
,

cooperative actions aco(t) = {acon (t)}, and GS actions

aso(t) =
{
asog (t)

}
. Therefore, the action vector can be

expressed as:

Φ(χ(t)) = {aac(t),aco(t),aso(t)} (12)

For the access actions, aacn,f,l ∈ {0, 1}, aacn,f,l = 1 means

that f l cached in satellite n needs to be replaced by the

video segment of currently requested; otherwise aacf,l = 0.

For the cooperative actions, aco(t) = [aco1 (t), . . . , acoN (t)],
acon (t) = 1 indicates the current request is processed by

the cooperative satellite n. For the GS actions, asog (t) = 1
means the requested video should be provided by GSs.

• Reward Function: When the system takes action A in

state S, the system will receive feedback rewards. Accord-

ing to the request processing procedure discussed above,

the video requested by UTs may have been cached by

access satellite, or maybe cached in the adjacent satellite

of access satellite. To achieve the maximum system

reward and to ensure the average video service delay

is minimized, we use a negative exponential function to

normalize the reward function, so the reward function is:

Rn (χ(t),Φ (χ(t))) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pln,fe
− dac

n (t)

Pn(t) , Access

pln,fe
− dac

n (t)+dHn (t)

Pn(t) , Cooperation

pln,fe
− dac

n (t)+d
g
n(t)

Pn(t) , Source

0, Else
(13)

where Pn is cache hit ratio of access satellite n, Pn =∑
r∈rn(t) c

r
n(t)

|rn(t)| . rn(t) is the requests received in t, crn(t) ∈
{0, 1}, crn(t) = 1 means satellite n has cached the requested

video, otherwise crn(t) = 0. pln,fe
−Pnd

ac
n (t) is the reward that

a UT obtains video segments directly from access satellite.

pln,fe
−Pn(d

ac
n (t)+dH

n (t)) means the UT is served by the satellite-

satellite cooperation. When a UT has to be served by GSs, the

reward is pln,fe
−Pn(d

ac
n (t)+dg

n(t)). Otherwise, the reward is 0.

B. CACVC: Coverage-Aware Cooperative Video Caching
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Fig. 4: The multi-agent actor-critic cooperation framework.

In Fig.4, actor and critic are built based on the neural

network, where the actor is used to learn the local policy

function to choose actions based on the state information from

the environment and decide to replace the video segments

cached on the satellite. The state information includes video

request state, current video cache state, and video popularity

state. The critic evaluates the decision of the actor based on the

video segment delivery delay and guides the actor to update the

policy better so that the probability of better actions increases

and the probability of worse actions decreases. When multiple

satellites need to make caching decisions, video requests and

popularity are the external environments. The negative expo-

nential form of service delay for the entire satellite network is

used as the reward for all nodes. The critic input in MADDPG

contains information about the actions of all agents so that it

can converge to a better state more consistently and faster.

The output values of the critic network are used to train the

parameters of the actor-network.

Suppose the policy set of n agents is π = {π1, π2, . . . πn}.

θ = {θ1, . . . θn} represents the strategy of n agents.

For the cumulative expected reward of the i-th agent,

the policy gradient is defined as: ∇θi J (μi) =
Eo,a∼D [∇θiμi (ai | oi)∇aiQ

μ
i (o, a1, . . . , an) | ai = μi (oi)],
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where Qμ
i (o, a1, . . . , an) is a centralized action-value

function, o = {o1, . . . on} contains the observations.

Thus, we use this gradient to update the actor-network. We

need to calculate the mean square error between it and target

network as the loss to update parameters for the critic network.

L (θi) = Eo,a,r,s′
[
(Qμ

i (s, a1, a2, . . . , an)− y)
2
]

(14)

y = ri + γQi
μ′
(x′, a′1, . . . , a

′
n)
∣∣∣
a′
j=μ′

j(oj)
(15)

Where Qi
μ′

is the target network, μ′ = [μ′
1, μ

′
2, . . . , μ

′
n]

represents the delayed update parameters of the target network

θ′j . The strategies of other agents can be obtained by fitting

approximation without communication interaction.

Finally, according to the description above, the proposed

CACVC algorithm for LEO satellite networks can be summa-

rized in Algorithm 1.

Algorithm 1 The proposed CACVC Algorithm

Initialize: the discount factor γ, the maximum learning episode EP, the
replay buffer D, the weights and learning rate of the actor network and the
critic network, random process Ψ, the network layout with N LEO satellites.

1: for episode = 1 to EP do
2: Each satellite receives the initial state ot

i according to the task
requirements and network environment, and the global state st.

3: for each step t = 1 to T do
4: For each agent i, select action ai = μθi (oi) +Nt w.r.t.
5: Execute actions a = (a1, . . . , aN ), observe reward r and new

state s′.
6: Store (s, a, r, s′) in replay buffer D.
7: Set s ← s′.
8: for agent i = 1 : N do
9: Sample a random minibatch of J samples

(
sj ,aj ,rj ,s′j

)
from

D.
10: Set y according to (14)
11: Update the critic network and the actor network.
12: end for
13: Update the target Q network: θ′i ← τθi + (1− τ)θ′i
14: end for
15: end for

V. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed

CACVC algorithm through comprehensive simulation and

comparison with different baseline algorithms.

TABLE I: PARAMETERS SCHEME

Parameter Value Parameter Value

Number of Satellites 11 Learning rate η 0.001
Satellite orbit height 780 Km Mini-batch size 8
Orbit inclination 86◦ Weight decay coefficient 0.0001
Half cone angle ψ 62◦ Discount factor 0.9
Elevation mask 8.2◦ Number of epochs 200
Latitude threshold 60◦ Target network update rate 0.01
Lengths of the videos 4-15s Exploration fading factor 0.9
Video resolution 720p Experience replay buffer size 50000
Storage capacity cn 100-500MB Reward discount factor γ 0.95
Number of video 10000-30000 Initial exploration coefficient 0.03

A. Simulation Settings

To verify the effectiveness of CACVC, we built a satellite

network simulation scenario based on STK and python 3 by

taking Iridium as the reference. The satellite network consists

of 11 satellites evenly distributed in one orbit. Total 2000 UTs

are uniformly distributed in SOC. Satellite parameter setting

main reference [17]. We use three FC networks in the actor-

network at most, with 256, 128, and 64 neurons, respectively.

The same setting for the critic network. The main parameters

are listed in Table I.

B. Baseline Algorithms and Metrics

We compare our proposed CACVC algorithm with four

baseline solutions:

• First Input First Output (FIFO): The oldest content in the

system will be replaced first.

• Least Recently Used (LRU): The least recently used

content in the system will be replaced first.

• Least Frequently Used (LFU): The least frequently used

content in the system will be replaced first.

• Exchange-Stable Matching (ESM): A stable exchange

matching algorithm based on matching game theory [9].

Besides, for quantitatively evaluating the performance of our

proposed method, the following performance metrics are used:

1) Hit ratio: The cache hit ratio is usually determined by

whether the requested video exists in the local video library.

In the CACVC algorithm, since the requested video can be

obtained from adjacent satellites, UTs can still obtain lower

video service delay. Therefore, we propose the cache hit ratio

as a performance indicator, which is defined by the following:

Phit =
1

T

T∑
t=1

∑
r∈rn(t)

[
crn(t) + (1− crn(t)) c

r
adjacent(t)

]
|rn(t)|

(16)

where rn(t) is the requests received in a slot t, cradjacent(t) ∈
{0, 1} is the cache status of adjacent satellite, cradjacent(t) =

1 means the adjacent satellite has cached video of request r,

otherwise cradjacent(t) = 0.

2) Average service delay davg: the average service delay for

all requested video within the T period.

C. Convergence Results & Performance Comparison

Fig. 5: The convergence speed of CACVC.

The learning process of CACVC is shown in Fig. 5. The

reward increases rapidly up to about 500 episodes and then

gradually stabilizes. This indicates the learning algorithm

converges after about the 500 training episodes, and then the

well-trained network can be used for accurately estimating

value function.

We plot the average video service delay and hit ratio

in Fig. 6 and 7, respectively. On service delay, CACVC

achieves the lowest average delay of 1515ms, improving the

performance of 1.2%, 12%, 13.8%, and 12.9% compared to

ESM, LRU, LFU, and FIFO, respectively. On hit ratio, almost



Fig. 6: Average video service delay. Fig. 7: Cache hit ratio.

60% video requests are satisfied by the CACVC algorithm,

and it outperforms ESM, LRU, LFU, and FIFO algorithms

with up to 4%, 14%, 18%, and 15% improvements. While

individual satellite has limited storage space, CACVC enables

the sharing of cached video between satellites, thus avoiding

redundant caching of the same video among satellites, which

saves storage space with satellites. In contrast, LRU, LFU, and

FIFO make caching decisions independently so that satellites

may cache duplicate video. They may cache much less video

than CACVC in the limited storage space. Meanwhile, since

the deep learning model characterizes the variation of content

popularity better than the heuristic model, CACVC achieves a

higher cache hit ratio and a lower average delay than ESM.

D. Sensitivity Analysis

(a) (b)

(c) (d)

Fig. 8: (a) average delay, (b) hit ratio versus cache capacity; (c) average delay,
(d) hit ratio versus video number.

Fig. 8 demonstrates the network performance under differ-

ent cache capacities and video numbers. According to Fig. 8

(a), (b), the cache hit ratio increases, and the average video

service delay decreases in all five algorithms as the cache

capacity increases (the video number is 20000). Compared to

the LRU, LFU, FIFO, and ESM algorithms, the video cache hit

ratio of the proposed CACVC improved by 13.17%, 17.7%,

16%, and 5.5%; the video service delays of proposed CACVC

is reduced by 180ms, 208ms, 194ms, and 18ms. Because

when the cache capacity is large enough to store more videos,

replacement processes rarely occur.

According to Fig. 8 (c), (d), the average video service delay

increases, and the cache hit ratio decreases as the number of

videos increases. The CACVC algorithm reduces the average

video service delay by 2%, 3.8%, 2.9%, and 1.2% compared

to the LRU, LFU, FIFO, and ESM algorithms, respectively.

The main reason is that when more popular videos are cached

on the satellite, the newly requested videos are not cached.

VI. CONCLUSION

In this paper, we formulated the cooperative caching prob-

lem as a POMDP-based multi-agent decision problem, which

jointly optimized the service delay of fetching videos from

local satellites, adjacent satellites, and GSs. We conceive a

CACVC algorithm based on Multi-Agent Deep Reinforcement

Learning to solve this problem. Our experimental results

verified that the proposed CACVC algorithm facilitated the

collaboration between satellites and thus reduced the service

delay of fetching videos while improving the cache hit ratio.

In the future, we plan to consider caching base stations,

vehicles, and other devices in the system. Each device with

caching enabled can act as a cooperation cache node to share

content caching with LEO satellites and other devices.
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