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Abstract—Content caching in vehicular networks is a promis-
ing technology to dramatically reduce the request-response time
and transmission delay. The existing caching policies often
suffer from high computation and communication overhead and
fail to well capture the dynamics of the vehicular networks
and content popularity. In this paper, we propose a novel
Cooperative Caching algorithm for vehicular networks with
multi-level federated Reinforcement Learning (named CoCaRL)
to dynamically determine which contents should be replaced
and where the content requests should be served. In CoCaRL,
Deep Reinforcement Learning (DRL) is employed to optimize
the cooperative caching policy between RoadSide Units (RSUs)
of vehicular networks, while a federated learning framework
applies to reduce the computation and communication overhead
in a decentralized way. To speed-up the convergence rate, we
also develop a two-level aggregation mechanism for federated
learning, where the low-level aggregation is performed at the
RSUs and the high-level aggregation is executed at a Global
Aggregator (GA). Through extensive simulation experiments, we
demonstrate that our algorithm can: 1) achieve a higher hit rate
than four baseline algorithms, 2) converge faster than original
federated reinforcement learning without multi-level aggregation,
and 3) perform good adaptability to different cache capacities
and content quantities.

Index Terms—Vehicular Networks, Cooperative Caching, Deep
Reinforcement Learning, Federated Learning

I. INTRODUCTION

Along with the recent advances in automotive technology
and in-vehicle networks, a great number of innovative vehic-
ular applications are emerged to enhance driving safety, travel
comfort, and in-car entertainment [1]. These applications often
impose a large demand on computation, communication, and
storage resources, and have specific requirements on Quality
of Service (QoS) (e.g., transmission delay and response time),
which cannot be satisfied if the data is fetched only from
a cloud data center. Vehicular edge caching is considered
as a promising technology to fulfill such QoS requirements
by partially migrating the cloud caching to edge vehicular
devices, such as RoadSide Units (RSUs) [2]. However, due
to limited cache capacity at RSUs, a caching scheme by
cooperatively utilizing the cache space of the cloud data center
and all the RSUs should be well designed.

*The corresponding authors are Yongyi Ran and Jiangtao Luo.
*This work is supported by National Science Foundation of China (No.

62003067).

Besides the limited cache capacity of RSUs, the design
of caching policy for vehicular networks will also face the
following three issues. First, the regional content popular-
ity and validity is time-varying. The cache policy needs to
dynamically decide which contents need to be cached and
where the selected contents are cached (e.g., local RSU or
neighbor RSU) by making full use of the dynamics of cache
space and content popularity. Second, there exist a large
number of connected vehicles and contents, which will result
in high computation and communication costs as well as the
problem of ”Curse of Dimensionality”. Third, privacy rules
limit the use of user data. In order to protect the privacy of
vehicle users, the user data (e.g., request interests, procurement
records) sometimes can only be used locally and cannot
be transmitted to a centralized place. It makes centralized
algorithms impossible to solve a global optimal caching policy.

Many caching policies have been designed and applied in
vehicular networks. Traditional caching approaches, such as
Least Recently Used (LRU), Least Frequently Used (LFU),
and First Input First Output (FIFO), is firstly employed to
derive the basic caching replacement policies in vehicular
scenarios [3], [4], while they often fail to well capture the
dynamics of content popularity. In [5], [6], the content pop-
ularity is considered to find a content placement strategy
that decides the placing locations and proportions for all
contents, but the formulated problems are often NP-hard and
only a near-optimal solution can be derived due to high
computation complexity. To handle this issue, some model-
free caching algorithms based on deep reinforcement learning
(DRL) are proposed in vehicular networks [7]–[10]. However,
these algorithms need to collect a lot of data for training at a
centralized place, which may result in privacy issues and make
the convergence rate slow. To alleviate this, [11] proposes a
novel decentralized caching scheme based on federated DRL
for the Internet of things, but only the devices covered by the
same RSU will federally share the training model, and the
global content popularity cannot be perceived.

To tackle the challenges discussed above, we propose a col-
laborative caching algorithm for vehicular networks combining
DRL with multi-level federated learning, called CoCaRL. In
CoCaRL, vehicles collect and keep local data individually,
then train a DRL model separately on their own On-board
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Unit (OBU), where the initial parameters of the DRL model
on each OBU are the same. After one round of training, the
new model parameters on each OBU are sent to the associated
RSU, where all the model parameters from participating
vehicles are aggregated, here we call this procedure as Low-
level Aggregation. All the RSUs then send the aggregated
parameters to a central server, named Global Aggregator (GA),
to complete a High-level Aggregation. Finally, the GA will
send the aggregated parameters to each OBU on vehicles for
the next round of training. In this way, GA can help the
training models on the OBUs to perceive the changes
in global content popularity. Our main contributions are
summarized as follows:
• We propose the CoCaRL algorithm combining DRL with

federated learning to optimize the caching policy for
vehicular networks. DRL can well capture the dynamics
of content popularity and cache capacity, while federated
learning can reduce the computation and communication
overhead by training a model in a decentralized way.

• In order to speed-up the convergence rate, we propose a
multi-level aggregation mechanism for federated learning.
The low-level aggregation is performed at RSU, while the
high-level aggregation is finished at the GA.

• Extensive simulation experiments are carried out to
demonstrate that the proposed CoCaRL can improve the
convergence rate and cache hit rate compared to the
baseline algorithms.

The rest of the paper is organized as follows. Section II
summarizes the related work. The system model and problem
formulation is presented in Section III. The proposed CoCaRL
algorithm is described in Section IV. Section V shows the
evaluation results. Finally, section VI concludes this paper.

II. RELATED WORK

In this section, we investigate the relevant work from two
aspects: traditional methods and learning-based methods for
vehicular caching.

A. Traditional methods for vehicular caching

Many efforts based on traditional methods have been de-
voted to addressing the caching problem of vehicular net-
works. Su et al. [12] proposed a model to determine whether
and where to obtain the replica of content when the moving
vehicle requests it, then a cross-entropy-based dynamic content
caching scheme is proposed accordingly to cache the contents
at the edge of VCNs. In [13], the authors aimed at minimizing
the average service delay. Lyapunov optimization and match-
ing theory are combined to optimize the cache replacement
in the vehicle. Chen et al. [5] formulated an optimization
problem of cooperative content placement to minimize the
overall transmission delay and service cost. An ant colony
optimization-based algorithm is developed to find a near-
optimal solution. Liu et al. [6] jointly optimized the cache
allocation and content placement in vehicular networks, and
developed a low-complexity approximate algorithm which per-
forms within a bounded gap to the optimum. These traditional

methods often require global information and are difficult to
adapt to dynamic environments. In addition, the formulated
problems are often NP-hard and only a near-optimal solution
can be derived due to high computation complexity.

B. Learning-based methods for vehicular caching

With the development of machine learning/deep learning,
many learning-based methods have been developed to optimize
the content caching strategy for vehicular networks. In [8], the
authors described vehicular content caching as a long-term
mixed-integer linear programming problem and built a collab-
orative caching scheme based on Deep Deterministic Policy
Gradient (DDPG). Ma et al. [9] modeled the pre-caching
and task allocation as Markov decision processes (MDP), and
DDPG is applied to determine the optimal ratio of pre-caching
and task allocation. Yu et al. [10] deployed a context-aware
adversarial auto-encoder model to estimate content popularity,
and the predicted popular contents are placed at the edge of
vehicular networks to reduce latency. Zhong et al. [7] studied
content caching at the wireless network edge using deep actor-
critic reinforcement learning with Wolpertinger architecture.
Most of the learning-based caching schemes are performed
in a centralized way, the computation and communication
overhead is extremely large, and the convergence rate is slow.
In addition, there exist some privacy issues due to gathering
the training data in a central place.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the vehicle network model.
Second, we present the content model. Finally, the problem
formulation is given.

A. System Model for Vehicular Networks

Fig. 1. System model of vehicular networks for content delivering.

As shown in Fig. 1, a typical vehicular network for content
delivering comprises one Cloud Data Center (CDC), a set of
RoadSite Units (RSUs) U = {1, 2, . . . , U}, and a number of
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vehicles V = {1, 2, . . . , V }. Each vehicle is equipped with an
On-Board Unit (OBU) and the set of OBUs can be represented
as O = {1, 2, . . . , O}. CDC has enough cache space and can
store all published contents. RSUs provide content services for
vehicles within the coverage area through wireless links, and
the adjacent RSUs communicate with each other via wired
optical cables. RSUs have the limited capability of caching
and computing, and can selectively cache part of the contents.
Here we assume that the cache size of RSU u ∈ U is Su. In
addition, RSUs will be used to aggregate and store model
parameters while training our proposed algorithm. Vehicle
users can send requests via its OBU to obtain content from
the associated RSU, neighboring RSUs, or the CDC. Model
training is separately carried out on each OBU of the vehicles.

B. Content Model

We define the content library as C = {1, 2, . . . , C}, and
denote Bc as the size of content c ∈ C.

Content popularity: Let pu,i denotes the popularity of the
i-th contents at RSU u, which follows the Mandelbrot-Zipf
(MZipf) distribution [14]. Thus we can get

pu,i =
Iu(i)

−zu∑|U|
u=1 Iu(i)

−zu
, (1)

where Iu(i) indicates the popularity rank of the i-th content
at RSU u, zu is a skewness factor taking values in [0.6, 1.2].
A larger value for zu indicates that RSU u contains relatively
a small set of very popular contents.

C. Problem Formulation

In order to adapt to the changes in the environment, the
RSUs need to dynamically determine which contents should
be replaced and where the content requests should be served
during each episode. Through such a decision, our optimiza-
tion goal is to maximize the cache hit rate. The cache hit rate
Phit of T requests can be defined as

Phit =

∑T
t=1H (index)

T
(2)

where the function H(index) is defined as:

H (index) =

{
1, content request index hit
0, otherwise (3)

Therefore, the problem of maximizing the cache hit rate can
be expressed as:

max
φ

Phit

s.t.
|C|∑
c=1

φcBc ≤ Su,∀u ∈ U
(4)

where φ is a 1 × |C| matrix, representing the content cached
in the RSU, φc = 1 means RSU has a cache of content c,
φc = 0 is the opposite.

IV. THE PROPOSED COCARL ALGORITHM

In this section, we first give some basics of DRL framework,
and then describe the proposed CoCaRL algorithm in detail.

A. The DRL Model

Here we define the state space, action space and reward
function for the DRL-based framework as follows:

1) State space: We divide the state into three parts: content
request state sreo = {sreo,c}, RSU content cache state scau =
{scau,c} and content popularity state spou = {spou,c}, o ∈ O, u ∈
U , c ∈ C. At the beginning of each decision episode, we will
collect all the states for training or decision. sreo,c = 1 indicates
OBU o sends a request for content c, sreo,c = 0 represents that
OBU o will not request content c during this episode. scau,c = 1
denotes RSU u cached content c, scau,c = 0 is the opposite.
spou,c = pu,c means the content popularity of content c under
RSU u. The state vector can be expressed as

S = (sreo , s
ca
u , s

po
u ) (5)

2) Action space: In order to adapt to the dynamics of
the system states and guarantee the QoS, the RSUs need to
determine which contents should be replaced and where the
content requests should be served during each episode. Here
we define three types of actions following [11]: local actions
aloc = {alocc }, collaboration actions aco−rsu = {aco−rsuu }, and
cloud action acdc, where alocc , aco−rsuu , acdc ∈ {0, 1}, u ∈ U ,
c ∈ C. Therefore, the action vector can be represented as

A = (aloc,aco−rsu, acdc) (6)

For the local actions, alocc = 1 represents content c needs
to be replaced by the current request content, alocc = 0 is the
opposite. For the cooperation actions, aco−rsuu = 1 indicates
the current content request is processed by the RSU u. For the
cloud action, acdc = 1 means the requested content should be
downloaded from CDC.

3) Reward function: According to the request processing
procedure discussed above, the content may be hit in the local
RSU, the neighbor RSU, or the CDC. The hit in different
locations will get different response times and transmission
delay. Therefore, our reward is correspondingly divided into
three cases: local RSU hit rate P local

hit , neighbor RSU hit rate
P co−rsu
hit and CDC hit rate. Accordingly, the reward function

can be defined as follows:

r (S,A) =


P local
hit , Local
P co−rsu
hit , CO-RSU

0, CDC
(7)

If one OBU obtains the requested content from local RSU, the
reward is P local

hit . If the OBU get the requested content from a
neighbor RSU, the reward is P co−rsu

hit . If the OBU downloads
the requested content from the CDC, the reward is set as 0.

B. CoCaRL: Cooperative Content Caching with Multi-level
Federated RL Algorithm

Although some progress has been achieved in DRL-based
caching policy for vehicular networks (as discussed in Section
II), most of the DRL-based approaches have the following
shortcomings: 1) The convergence rate is slow if only using
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one DRL agent for training, 2) the computation and communi-
cation overhead is large if training in a centralized way, and 3)
user privacy cannot be guaranteed if using user data at a central
place. To address these issues, we propose a cooperative
content caching algorithm by combining DRL with federated
learning, termed CoCaRL. Especially, we develop a multi-
level aggregation mechanism for CoCaRL to speed-up training
convergence and make the local agents perceive the changes
in global content popularity.

1) Individual DRL Model on each OBU: For each OBU,
we implement an DRL agent for individually training a Double
Deep Q-Network (DDQN) [15] model with local state. DDQN
is extended from Q-learning by utilizing neural network.
In Q-learning, Q-value function is defined as the expected
cumulative reward to evaluate how good the chosen action
is for its corresponding state:

Q(S, A) = E[
∞∑
t=0

γtr(St,At)|S0 = S,A0 = A] (8)

where γ is a discount factor. According to Bellman equation,
the Q-value function can be expressed as:

Q(S,A) = R(S,A) + γ arg max
A′∈A

Q(S′,A′) (9)

Once the Q∗(S,A) for each state-action pair is obtained,
the optimal policy π∗ can be expressed as:

π∗(S) = argmax
A∈A

Q∗(S,A) (10)

DDQN uses neural network to approximate the Q-value.
The DRL agent preserves two neural networks Q(S,A;w)
and Q̂(S,A; ŵ), w and ŵ are the network parameters. The Q
network is an evaluation network for selecting an action, while
the Q̂ network is a target network for training. The DDQN
model on each OBU is initialized with the same parameters.
Each DRL agent first executes the corresponding action A(S)
according to the current local state S, and then obtains the
current feedback reward r(S,A(S)). Finally, the previous
system state S is transformed into the next new system state
S′. The transition < S,A(S), r(S,A(S)),S′ > will be stored
into an experience replay pool M (namely, transition memory).
For each episode e > 0, the agent randomly selects a mini-
batch me from the transition memory M , and then trains the
Q network by minimizing the loss function:

L(we) = E(S,A,r(S,A),S′)∈me [(r(S,A)

+ γ · Q̂(S, argmax
A′

Q(S′,A′;we); ŵe)

−Q(S,A;we)2]

(11)

We can obtain the gradient updates of we by ∇weL (we) as
follows:

∇weL (we) = E(S,A,r(S,A),S′)∈me [(r(S,A)

+ γ · Q̂
(
S, argmax

A′
Q (S′, A′;we) ; ŵe

)
−Q (S,A;we)) · ∇weQ (S,A;we)]

(12)

After each round of training, OBU o updates the parameters
through the following formula:

we+1
o = we

o − η∇Lo (w
e) , (13)

where η represents the learning rate.

Fig. 2. Illustration of low-level and high-level aggregation of CoCaRL.

2) Multi-level Federated DRL: As shown in Fig. 2, our
proposed CoCaRL includes two levels of aggregation: Low-
level aggregation is performed in RSUs, while high-level
aggregation is executed in the Global Aggregator (GA). GA
is essentially a centralized model parameter server, which can
be located at a standalone server or implemented on any RSU.

Algorithm 1 The training of CoCaRL
Initialization:
1: Initial weight w0;
2: The number of episodes E;
3: Learning Rate η.
4: Initial replay memory M;
5: Initial Q network and Q̂ with same weight w.

Iteration:
6: for e = 1, 2, 3 . . . , E do
7: for u = 1, 2, 3 . . . , U do
8: for each OBU h do
9: Receive state Se.

10: Select action argmaxA(Se)
Q (Se,A (Se) ;we).

11: Execute action Ae

12: Obtain reward r(Se,Ae).
13: new state Se+1.
14: Store transition (Se,Ae,r,Se+1) in M.
15: Sample a random minibach of me from M.
16: Compute the loss by (11)
17: Update the Q network parameters we+1

h according to (13)
18: Upload we+1

h to RSU u.
19: end for
20: Receive we+1

h from each OBS h
21: Update local RSU parameter by (14)
22: Upload we+1

u to GA.
23: end for
24: Receive we+1

u from each RSU u
25: Update global parameter according to (15)
26: GA distributes we+1 to each OBU.
27: end for

Low-level aggregation: This aggregation occurs between
the RSU and its covered OBUs. At the beginning of training,
the DRL model on each OBU is initialized with the same
network parameters. After each round of training, the OBU
uploads the new model parameters to its associated RSU,
where all the model parameters from participating vehicles are
aggregated. Assume that there are H OBUs in the coverage
of RSU u. The datasets of H OBUs can be represented
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as Du = {D1, D2, . . . DH}. The low-level aggregation that
occurs on RSU u is denoted as:

we+1
u =

∑H
h=1Dhw

e+1
h∑H

h=1Dh

(14)

In this process, the model training and data storing are
all locally performed on the OBUs, which means that the
computing cost and power consumption are shared by all the
OBUs. In addition, there is no exchange of native data between
OBUs and RSUs, the privacy can be well protected.

High-level aggregation: This aggregation occurs between
GA and RSUs. After all the RSUs aggregates the parameters
collected from its covered OBUs, RSUs upload the aggregated
parameters to the GA. Then, GA updates the global parameters
and sends the updated parameters to each OBU via RSU for
the next round of training. This high-level aggregation formula
is defined as:

we+1 =

∑|U|
u=1 w

e+1
u

|U|
(15)

In this way, GA can help the training models on the OBUs to
perceive the changes of global content popularity, and speed-
up the convergence of the models. The pseudo code of training
CoCaRL is shown in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we present simulation experiments to evalu-
ate our proposed algorithm, and analyze the simulation results.

A. Experiment Setup

In order to evaluate our proposed algorithm, we use Python
to simulate a vehicular network environment in an urban area.
The environment consists of a CDC, 2 RSUs, and several
vehicles located in the RSU coverage area. Most of the existing
methods use Zipf distribution to simulate the distribution
of content popularity, therefore, we use Zipf distribution to
generate a dataset. All vehicles have datasets for local model
training. RSU capacity S = 400 MB, content type C = 100.
The size of each content is [1,8] MB. The hidden layer of the
Q network has 256 neurons, reward discount factor γ = 0.9,
learning rate η = 0.05. The capacity of replay memory M =
2000, the size of minibatch = 100.

B. Baseline Algorithms and Metrics

We compare our proposed CoCaRL algorithm with four
baseline solutions::
• Least Recently Used (LRU): The least recently used

content will be replaced firstly.
• Least Frequently Used (LFU): The least frequently used

content will be replaced firstly.
• First Input First Output (FIFO): The oldest content will

be replaced firstly.
• Federated DRL (FDRL): A dynamic cache control algo-

rithm based on federated DRL [11].
The metrics used in this paper to evaluate the performance

includes:

1) Hit rate: The hit rate is calculated follows the formula (2).
2) Transmission delay: The transmission delay includes three

parts: RSU to vehicle trv, RSU to RSU trr and RSU to
CDC trc.

C. Convergence Results & Performance Comparison

In Fig. 3, we can observe that the convergence time of
CoCaRL is about 1000 episodes earlier than that of FDRL.
This is because CoCaRL algorithm using multi-level fed-
eration can better aggregate the popularity of each RSU
cache content than FDRL. Besides, CoCaRL is adaptable to
dynamic environments and makes good decisions in complex
environments.

Fig. 3. Comparison of the convergence speed of CoCaRL and FDRL.

Fig. 4. Hit rate of different algorithms.

As shown in Fig. 4 and Fig. 5, the three traditional al-
gorithms FIFO, LRU and LFU, cannot achieve high hit rate
and low delay in a complex environment, CoCaRL and FDRL
outperform traditional algorithms. Compared with FIFO, LRU
and LFU algorithms, its hit rate performance has improved
by 15%, 15% and 10%, and its latency performance has
increased by 28%, 27% and 24%, respectively. In the initial
stage, the performance of CoCaRL and FDRL is worse than
that of traditional algorithms. This is because learning-based
algorithms require a certain amount of time to interact with the
environment and continue to learn while traditional algorithms
have fixed mechanisms and cannot make flexible decisions
based on dynamic environments. But in the later stage, the
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Fig. 5. Delay of different algorithms.

hit rate of CoCaRL and FDRL is significantly better than
traditional algorithms. Besides, in many cases, our algorithm
is better than FDRL because we have high-level aggregation
that allows vehicles to perceive global popularity.

D. Sensitivity Analysis

Fig. 6 demonstrates the algorithm hit rate under different
cache capacities. The cache capacity ranges from 100 to
400. Compared with the FIFO, LRU and LFU algorithms,
the CoCaRL algorithm improves the hit rate performance by
11%, 9%, and 9% respectively and slightly higher than the
FDRL. We can see from the figure that as the cache capacity
increases, the cache hit rate of various algorithms is increasing
because more cache capacity means more popular content can
be stored, and the process of cache replacement rarely occurs.

Fig. 6. Hit rate with different
cache capacities.

Fig. 7. Hit rate with different
content numbers

We compare the cache hit rate of the algorithm under
different content amounts in Fig. 7. The CoCaRL algorithm
improves the hit rate performance with up to 7%, 6% and 7%
compared to the FIFO, LRU and LFU algorithms, respectively.
As the number of content increases, the cache hit rate of
various algorithms decreases significantly. Because the cache
capacity is limited, some moderately popular content may not
be cached, resulting in frequent cache replacement processes.

VI. CONCLUSION

In this paper, we have proposed a Cooperative Content
Caching algorithm with Multi-level Federated Reinforcement
Learning, named CoCaRL, to dynamically determine which
contents should be replaced and where the content requests
should be served. In CoCaRL, each OBU firstly trains a DRL
model individually and feedbacks the model parameters to its

associated RSU. Then, a multi-level aggregation mechanism
is performed to achieve federated training and accelerate
the overall convergence speed. The low-level aggregation is
performed at the RSU, while the high-level aggregation is
finished at a Global Aggregator. Finally, extensive simulation
experiments are carried out to demonstrate that our proposed
CoCaRL can: 1) achieve a higher hit rate than four baseline
algorithms, 2) converge faster than original federated rein-
forcement learning without multi-level aggregation, and 3)
perform good adaptability to different cache capacities and
content quantities.
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