
GRouting: Dynamic Routing for LEO Satellite
Networks with Graph-based Deep Reinforcement

Learning
Hao Wang1, Yongyi Ran∗2, Lei Zhao1, Junxia Wang1, Jiangtao Luo∗2, Tao Zhang3

Chongqing University of Posts and Telecommunications, Chongqing, China
1{S190101069,S190131061,D170101010}@stu.cqupt.edu.cn, 2{Ranyy, Luojt}@cqupt.edu.cn,

3{zhangtao}@wise-code.com

Abstract—The effective and reliable routing for Low Earth Orbit
(LEO) satellite networks is intractable. The existing approaches
cannot well handle the time-varying topology, frequent link han-
dover, and imbalanced communication load. To tackle these issues,
in this paper, we propose GRouting algorithm combining Graph
Neural Networks (GNN) with Deep Reinforcement Learning (DRL)
to dynamically find the optimal routing paths for LEO satellite
networks. First, GNN is employed to learn the representation of
satellite networks with non-Euclidean data structures. GNN is able
to generalize over arbitrary satellite networks topologies, which
means that it can deal with time-varying states of satellite networks.
Then, based on the representation learned by GNN, DRL is applied
to select the optimal routing path between two satellites, which can
maximize the utilization of network resources while guaranteeing
the requirement of transmission delay. Finally, extensive simulation
experiments are carried out to illustrate that 1) our method has a
better performance than the baseline algorithms, and 2) the GNN-
based method can achieve better generalization over time-varying
topologies.

Index Terms—LEO Satellite Networks, Dynamic Routing, Graph
Neural Networks, Deep Reinforcement Learning

I. INTRODUCTION

In recent years, Low Earth Orbit (LEO) satellites are attract-
ing more and more attention due to the dramatically increasing
requirements of ubiquitous communication. LEO satellites are
able to achieve low latency and high throughput communication
[1]. A LEO satellite constellation is usually designed for com-
plex communication tasks, which are difficult to be completed
by a single satellite. In order to achieve data transmission for
a large-scale satellite network, it is critical and fundamental to
design an efficient routing scheme.

It is challenging to plan an effective routing scheme for
LEO satellite networks due to the following three aspects.
First, the topology of satellite networks is time-varying. A LEO
satellite constellation usually consists of hundreds of satellites,
and each satellite is moving at a high speed, which leads to
a constantly changing topology. Thus, routing schemes need
to be adapted to changes of the topology. Second, the links
between satellites are stochastic and intermittent. Due to the
time-varying Inter-Satellite Links (ISLs), channel interference,

*The corresponding authors are Yongyi Ran and Jiangtao Luo.
*This work is jointly supported by National Science Foundation of China

(No. 62171072, 62172064, 62003067).

etc., the communication bandwidth and latency are dynamic,
which makes it difficult for traditional static routing strategies
to be used in LEO satellite networks. Third, the arrival and
demand of the transmission tasks are stochastic. It is difficult
to dynamically match network capacity with transmission re-
quirements, which will finally results in workload unbalance
and network congestion.

Many efforts have been devoted to addressing the routing
problem in LEO satellite networks. Firstly, in order to handle the
periodic topology changes, topology virtualization based routing
schemes have been developed, including time virtualization [2],
[3], space virtualization [4], [5], and space-time virtualization
[6]. All of these approaches try to derive a fixed topology
and then calculate the routing paths in advance. Although
they can shield the movement of satellites and simplify the
computation of routes, they can hardly capture the real-time
situations in satellite networks and can hardly adjust the routing
paths to avoid congestion dynamically [6]. To overcome the
shortcomings, dynamic routing schemes have been proposed,
which periodically detect and collect network state information
on-board to achieve link-aware and/or load-balanced routing
[5], [7]–[9]. However, these approaches either take a long
time or are unable to get the global state information, thus
the calculated routing paths cannot be globally optimal. In
addition, these model-based or learning-based dynamic routing
approaches usually have poor generalization ability for different
topologies and incomplete state information, which will degrade
their performance in such a dynamic environment.

To address the issues discussed above, we first adopt the
Virtual Node (VN) strategy [4], [5] to construct a logical
topology for the LEO satellite network. Then, we propose
GRouting algorithm combining Graph Neural Networks (GNN)
[10] with Deep Reinforcement Learning (DRL) to dynamically
find the optimal routing paths for the satellite network. Our main
contributions are listed as follows:

• We construct a logical topology via Virtual Node strategy
for the target LEO satellite network, and GNN is employed
to learn the representation from the logical topology. GNN
has a strong generalization ability for different topological
structures and edge attributes, which can fully capture the
changes of link states.

123

2021 4th International Conference on Hot Information-Centric Networking

978-1-6654-0549-2/21/$31.00 ©2021 IEEE

20
21

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 H

ot
 In

fo
rm

at
io

n-
Ce

nt
ric

 N
et

w
or

ki
ng

 (H
ot

IC
N

) |
 9

78
-1

-6
65

4-
05

49
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HO
TI

CN
53

26
2.

20
21

.9
68

08
55

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

• We combine DRL with GNN to dynamically optimize the
routing paths for the target LEO satellite network. With the
help of GNN, DRL can better perceive the highly dynamic,
time-variant and sophisticated environments.

• Extensive experiments based on open datasets are carried
out to illustrate that our proposed algorithm can achieve a
better performance than the baseline algorithms.

The rest of this paper is organized as follows: Section II
summarizes the related work. The system model and problem
formulation are presented in Section III. The proposed GRouting
algorithm is described in Section IV. Section V shows the
evaluation results. Finally, Section VI concludes this paper.

II. RELATED WORK

In this section, we review the related work from the perspec-
tives of topology virtualization and dynamic routing schemes.

A. Topology Virtualization Schemes

Topology virtualization is an efficient way to shield the
movement of satellites and simplify the computation of routes.
Werner et al. [2] presented the concept of Virtual Topology,
which makes full use of the periodicity of satellite trajectories to
divide the satellite networks into several equal-length time slots,
and in each time slot, the topology is deemed as static. Based
on Virtual Topology, Jia et al. [3] proposed a routing algorithm
with Dijkstra and Depth-First-Search algorithms to improve the
computation efficiency. Chen et al. [4] proposed to deal with
the time-varying topology based on Virtual Node, in which
physical satellites and the virtual nodes correspond one to one
at any time if no satellite failure. In [11], the authors proposed
a novel Temporal Netgrid Model (TNM) to portray the time-
varying topology of large-scale SSNs. In TNM, the whole space
is divided into small cubes (i.e., netgrids) and then, satellites
can be located by netgrids instead of coordinates. Based on
topology virtualization, the routing paths can be calculated
offline. However, topology virtualization schemes can hardly
capture the real-time situations in satellite networks and can
hardly adjust the routing paths to avoid congestion dynamically.

B. Dynamic Routing Schemes

Many dynamic routing algorithms have been proposed to
adapt to the changes of satellite networks and optimize the
routing paths dynamically. Liu et al. [7] divided the routing
schemes into two stages. The preliminary optimal routing paths
are first calculated by predicting the satellite networks and then
congestion is avoided by informing the upstreaming satellites
to reroute a portion of the traffic. Wang et al. [8] built a multi-
objective optimization model, which adopts modifying factor to
adjust path cost and uses congestion prediction to foresee inter-
satellite link congestion, and an ant colony algorithm is utilized
to solve this model. In [5], the authors proposed a Two-Hops
State-Aware Routing Strategy Based on Deep Reinforcement
Learning (DRL-THSA) for LEO satellite networks. The Double-
Deep Q Network (DDQN) is employed in DRL-THSA to figure
out the optimal next hop by inputting the two-hops link states.

Sun et al. [9] developed an intelligent routing scheme of the
SDN satellite networks based on the orthogonal polynomial
neural network. These model-based or learning-based dynamic
routing approaches usually have poor generalization ability for
different topologies and incomplete state information, which
will degrade their performance in such a dynamic environment.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present satellite networks system and
problem formulation.

A. System Model for Satellite Networks

Fig. 1. Satellite networks system

As shown in Fig. 1, the reference system is consist of a LEO
satellite constellation and a set of gateway stations. Gateway
stations transmit data through the satellite network, and our goal
is to find the optimal paths for data transmission in the LEO
satellite constellation.

In this paper, a single-layer LEO polar satellite constellation
is considered, where ns satellites are distributed in no orbits.
The satellite network can be modeled as a directed graph:
g = (V,E), where V is the set of satellites and E is the set of
inter-satellite links (ISLs). Regularly, satellites have four ISLs,
i.e., two intra-plane ISLs and two inter-plane ISLs. However,
the inter-plane ISLs in the polar areas and the cross-seam
ISLs cannot be built. To shield the topology changes caused
by satellite movement, Virtual Node (VN) [4] is employed to
abstract the satellite network. In VN, the logical position of a
virtual node is used to represent the position of a satellite that
virtual nodes and satellites correspond one to one at any time.
When a satellite flies out of the range of the virtual node, the
neighboring successive satellite will enter the position of this
virtual node, which is called handoff. Handoff does not affect
the topology for the permanent one-to-one correspondence but
changes the links states. Based on VN, we can get a static
topology with dynamic links states.

Note that what we are concerned about are the states of links,
i.e., the attributes of edges in g, the state of the satellite network
can be further denoted as:

s = (g,Ea) (1)

where g shows the topology and Ea is the set of links states:
Ea = (e1, e2, ..., eL) (2)

124

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

where ei is the state of link i and L is the total number of
links in the satellite network. Besides, a link state contains a
set of fields, i.e., ei = (f1, f2, f3, f4, f5), where f1 denotes the
rest available capacity of the link, f2 indicates the occupied
bandwidth of the link, f3 is the link betweenness (a measure of
centrality inherited from graph theory that indicates how many
paths may potentially traverse), f4 is an action vector indicating
whether the requested data is transmitted over this link, and f5
is zero padding. Note that the dimension of a link state is related
to how much information it encodes.

B. Problem Formulation

When a request arrives, we calculate k candidate paths
(defined in (3)) using k−shortest−paths algorithm [12]. Our
aim is to find the optimal path from these candidate paths
according to the current satellite network state.

P = (p1, p2, ..., pk) (3)

If path p is selected as the optimal path, the available
capacity of links in the selected path p can be defined as:
AC = (ac1, ac2, ..., acLp

), where Lp is the number of links
in the selected path. The selected path should have enough
available capacity to transmit the requested data:

bw ≤ min
acl∈AC

acl, (4)

where bw is the required bandwidth.
As we know, transmission delay is key to Quality of Service

(QoS). Here we define the transmission delay as the number of
hops. In order to achieve a high throughput while keeping a low
transmission delay, we construct a utility function for a request
m using path p as:

Um(bwm, dp) = Uα1
(bwm) − λUα2

(dp) (5)

where bwm is the bandwidth requirement of request m, dp is
the transmission delay of path p. Note that bwm and dp need to
be normalized in advance. α1, α2 and λ are constants between
0 and 1. Usually, α1 and α2 can be set to the same value, λ
is the weight factor that determines the importance of delay
versus throughput. The functions Uα1(bwm) and Uα2(dp) have
the following format:

Uα(z) =
z1−α

1− α
(6)

Therefore, the optimization problem can be expressed as
maximizing the utility:

max
∑
m

Um(bwm, dp)

s.t. (4).

(7)

IV. THE PROPOSED GROUTING ALGORITHM

In this section, we present the proposed routing algorithm for
satellite networks in detail.

A. Graph Neural Networks and Deep Reinforcement Learning

In this section, we introduce the basis of Graph Neural
Networks (GNN) and Deep Reinforcement Learning (DRL).

message generating aggregation and update

Fig. 2. Message passing over node 1.

1) Introduction of GNN: GNN is an emerging family of
neural networks to deal with graph-structured data. GNN is
a kind of representation learning, which is able to output the
representation of graph-structured data. The core idea of GNN
is that the state of each node in the graph is related to the
state of its neighbor nodes. Thus all kinds of GNN variants try
to explore the relationship between nodes and their neighbor
nodes. Message Passing Neural Network (MPNN) [13] is the
general framework of GNN that inputs some initial state of the
graph and outputs the representation it learned. The forward
propagation of MPNN can be divided into two phases: a
message passing phase and a readout phase.

The message passing phase is a process of iterations, which
can be defined by several functions:
• Message function m(·). Message function is used to

generate messages from neighbor nodes for the center
node.

• Aggregation function A(·). Aggregation function is used
to aggregate all messages generated by message function.

• Update function U(·). Update function is used to update
the hidden state of the center node with its previous hidden
state and the aggregated message.

Then, the message passing process shown in Fig 2 can be
represented as:

Mk+1(o) = Ai∈N(o)[m(hik, h
o
k)] (8)

hok+1 = U [hok,Mk+1(o)] (9)

where i ∈ N(o) means that node i is the neighbor node of node
o. Mk+1(o) is the aggregated message for node o in iteration k+
1. ho0 denotes the initial hidden state of node o. Once the initial
state is given, every node o can updates its state hok according
to (8) and (9). The iteration process will go on for K times to
get a fixed point representation hoK for every node o.

After iterating K times message passing, a readout function
R(·) is used to output the representation hp in readout phase:

hp = R({hoK |o ∈ g}) (10)

In MPNN, message function, update function and readout
function can be learned by neural networks. Generally, the
message function and readout function can be approximated by
fully-connected neural networks, while the update function can
be implemented with recurrent neural networks (RNN).

2) The basis of DRL: Based on the description in Section III,
the state space, action space and reward function for the DRL
framework can be defined as follows:

125

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

• State space: In our algorithm, the DRL agent chooses
actions based on the state representation learned via GNN.
Thus, the state space is consist of all the possible value of
hp, so we have S = {hp1, hp2, ...}.

• Action space: The candidate paths P for all possible
source-destination pairs in the satellite network form the
action space A .

• Reward function: The reward function indicates the im-
mediate reward that the DRL agent can get from the
environment after it takes a certain action. Here we use
the utility function as the reward function:

r = Um(bwm, dp) (11)

In this paper, Deep Q-Network (DQN) [14] is employed to
learn the optimal routing policy for the LEO satellite network,
which is extended from Q-learning by utilizing neural networks.
In DQN, the Q-value is defined as the expected cumulative
reward that evaluates how good the chosen action is for its
corresponding state:

Q(s, a) = E[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a] (12)

where γ is a discount factor. According to Bellman equation,
the Q-value function can be expressed as:

Q(st, at) = r(st, at) + γmax
at+1

Q(st+1, at+1) (13)

Then, the action that provides the maximum Q-value for state
st will be chosen:

at = arg max
a′∈A

Q(st, a
′) (14)

DQN [14] uses a neural network to approximate the Q-
value. In DQN, two neural networks Q(s, a; θ) and Q(s, a; θ−)
are preserved, where the θ and θ− are the network weight
parameters. Q(s, a; θ) is the evaluation network for selecting
an action while Q(s, a; θ−) is the target network for training.
In addition, the transition 〈st, at, r(st, at), st+1〉 will be stored
into an experience replay pool D, then the Q network will be
updated with mini-batch sampled from D. In addition, the loss
of DQN is defined as follows:

L(θ) = E(s,a,r,s′)∈D[r(s, a) + γmax
a′
Q(s′, a′; θ−)

−Q(s, a; θ)]2
(15)

where (s, a, r, s
′
) is the transition randomly sampled from D.

Then, the gradient can be calculated as:

∇θL(θ) = E(s,a,r,s′)∈D[(r(s, a) + γmax
a′
Q(s′, a′; θ−)

−Q(s, a; θ))∇θQ(s, a; θ)]
(16)

B. Graph-DQN based routing algorithm

According to the aforementioned, we design the GNN-DRL
based network architecture for our proposed GRouting algo-
rithm, as shown in Fig 3. The message function and update
function are approximated by a three-layer fully-connected and
a one-layer recurrent neural network respectively. The default
aggregation function is set as the

∑
function and the readout

DQN

Iterate K times for every node

A

GNN

Virtual Node

reward

routing path

state
represe-
ntation

Fig. 3. Architecture of proposed GRouting algorithm for LEO satellite net-
works.

function is approximated by a three-layer fully-connected neural
network. The Q-Network is a five-layer fully-connected neural
network. This algorithm contains two parts: the training process
and test process. Algorithm 2 has shown the training process
and the test can be done through replacing the DQN agent with
the trained agent. Note that, gnn.propagate() in line 15 is the
forward propagation described before and its detail is shown
in Algorithm 1. Because the input satellite networks state is
basically composed of topology and the links states, it will first
be transformed into its corresponding linegraph, which is able to
convert edges into nodes while ensuring the equivalence. Even
though handoff happens often in Virtual Node-based satellite
networks, the state after a handoff can be directly sent to our
model to get routing paths once our model is trained completely
for GNN’s generalization.

Algorithm 1 MPNN on satellite networks
1: Input satellite networks state s with link initialization
2: sl = s.linegraph()
3: for k in range(K) do
4: for every node o ∈ sl.g do
5: Mk+1(o) = Ai∈N(o)[m(hik, h

o
k)]

6: hok+1 = U [hok,Mk+1(o)]
7: end for
8: end for
9: hp = R({hoK |o ∈ sl.g})

V. PERFORMANCE EVALUATION

A. Experiment Setup

In this paper, we use the Iridium constellation as the target
LEO satellite network, where 66 satellites are distributed in
6 orbits and we select 6 of these satellites as the source and
destination nodes. For each transmission, the source and the
destination satellites are chosen randomly from the selected
6 satellites and the required bandwidth is randomly generated
from several kinds of packages (i.e., 16, 32, 64 bandwidth units).
Once a request is implemented, the occupied bandwidth will not

126

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Routing Algorithm with Graph-based DQN
1: s, g, req = env.init()
2: DONE = False, reward = 0, k
3: gnn.init():
4: initialize the GNN model with ω
5: agt.init():
6: agt.rmb_counter, agt.memory_capacity
7: randomly initialize the evaluation network with θ
8: initialize the target network with θ− = θ
9: while not DONE do:

10: k_paths = k_shortest_paths(g, req.src, req.dst, k)
11: k_qvalues = {}
12: k_sprime = {}
13: for i in range(k) do
14: k_sprime[i]= env.apply_req(s, req.bw, k_paths[i])
15: k_sprime[i]= gnn.propagate(g, k_sprime[i])
16: k_qvalues[i]= agt.eval_net(k_sprime[i])
17: end for
18: action = agt.choose_action(k_qvalues, ε)
19: r, DONE, s’, req’ = env.step(s, action)
20: agt.store_transition(s, action, r, s’)
21: agt.rmb_counter += 1
22: reward += r
23: req = req’
24: if agt.rmb_counter >= agt.memory_capacity then
25: agt.experience_replay():
26: sample a minibatch
27: calculate the loss and gradient
28: update the weights ω and θ
29: agt.learning_step += 1
30: end if
31: if agt.learning_step % M == 0 then
32: θ− = θ
33: end if
34: end while

be freed until the episode ends and an episode ends when (4)
is not satisfied. The initial bandwidth for every link is set to
be 200 bandwidth units. The exploration rate ε decays from
1 exponentially every 3 episodes and stops at 0.001. We use
a tuple to denote the number of neurons for neural networks,
where the first element and the last element denote the number
of neurons for the input layer and output layer respectively, and
the other elements are the number of neurons for hidden layers.
Then, (40, 20, 20), (4240, 2048, 1024) and (1024, 256, 64, 16,
1) can be used to represent the number of neurons for message
function, readout function and the Q-Network. As to the update
function, the hidden size of RNN is set to be 20. The setting of
other parameters is shown in Table I.

B. Training Process
In order to illustrate the convergence of our model, we trained

our model for 400 episodes and the training process is shown
in Fig. 4. Note that the reward in Fig. 4 is the average reward
for every 10 episodes.

As we can see, the DQN agent was consistently trying to find
the optimal routing paths before about the first 200 episodes.
After 200 episodes, the average reward is becoming converged,
which means that the DQN agent has finished the learning
process and can find the optimal paths.

C. Baseline Algorithms
In order to compare our GRouting algorithm with some

baseline algorithms, three widely used baseline solutions and a

TABLE I
CONFIGURATION AND EXPLANATION FOR PARAMETERS

Parameters Explanation Values
α1, α2, λ parameters for reward 0.9, 0.9, 1

K iterative number of GNN 12
k number of candidate paths 5
n dimension of link state 20
lr learning rate 0.0001
γ discount factor 0.9
D replay pool size 3000

Fig. 4. Convergence analysis for GRouting.

method using DQN without GNN that are also based on Virtual
Node are selected:
• Shortest Path (SP). SP chooses the shortest path for every

coming request.
• Random Path (RP). RP decides the routing path randomly

from the candidate paths.
• Request Balance (RB). RB evenly splits the required band-

width into k parts and distributes them to all k candidate
paths.

• DQN without GNN (DWG) [15]. DWG utilizes DQN algo-
rithm without GNN, i.e., it directly uses a fully connected
neural network to approximate the Q-value of satellite
networks state.

D. Performance Comparison

We compare GRouting with four baseline algorithms in terms
of network throughput and transmission delay. We test 200
episodes for our trained model and baseline algorithms with the
same sequence of requests and the same number of candidate
paths. The experiment results are shown in Fig. 5 and we can
see:
1) Compared with SP algorithm, our algorithm outperforms

amazingly in throughput with comparable delay. Because SP
algorithm always chooses the shortest paths for requests, an
episode is quick to end and the delay is short. The throughput
has a 47.1% improvement with a 13.7% delay increase for
our algorithm.

2) In comparison with RP, our algorithm outperforms not only
in throughput but also in delay. Our algorithm improves the
throughput by 33.4% and decreases the delay by 6.1%.

3) Compared to RB, our algorithm has a much better perfor-
mance in throughput and delay. RB obviously increases the
throughput compared with SP and RP, however, the delay
also increases. Our model gets a 17.5% higher throughput
and 20.1% lower delay than RB.

127

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

4) Campared with DWG, our model achieves better perfor-
mance in throughput and delay. This is because DWG
doesnot have generalization ability. Numerically, our model
increases the throughput by 10.7% and decreases the delay
by 12.1%.

(a) Throughput with episode. (b) Throughput for 5 algorithms.

(c) Delay with episode. (d) Delay for 5 algorithms.

Fig. 5. Performance comparison with four baseline algorithms.

E. Performance Sensitivity Analysis

In this section, we conduct more experiments to 1) illustrate
GNN’s generalization and 2) analyse the performance with
different parameters.

First, we change the topology of satellite networks, i.e., one
satellite is removed. Then, the trained DWG model and our
model are tested for 200 episodes in terms of throughput. The
result is shown in Fig. 6(a). It’s obvious that DWG has a worser
performance on the new topology, however, our model can still
get a comparable throughput with different topologies, which
directly demonstrates GNN’s generalization ability.

Second, Fig. 6(b) shows training process with different pa-
rameters. Note that, GR(n,K) in Fig. 6(b) represents that our
proposed algorithm employes n dimensional link states and K
MPNN iterations. It can be found that different parameters result
in almost the same converged reward, which means that all of
them are able to learn the optimal routing policy. However, we
can see that the larger link state dimension and iterative number,
the more episodes are needed for training the model.

VI. CONCLUSION

In this paper, we present a Graph-based DQN routing algo-
rithm for satellite networks combining Virtual Node. First, we
describe the scenario and build the satellite networks system
by Virtual Node. Then, the emerging GNN model is used to
learn the representation for dynamic satellite networks states. In
addition, GRouting is proposed to choose the optimal routing
paths for satellite networks via Graph-based DQN. Finally,
extensive experiments are conducted to illustrate that: 1) GNN

(a) Throughput over a new topology. (b) Training process with different
parameters.

Fig. 6. Performance analysis with a new topology and different parameters.

has great generalization ability that enables our model to capture
the dynamics of the LEO satellite networks (including topology,
links states and workload/congestion); 2) GRouting is able
to increase the throughput at most 47.1% and decrease the
transmission delay at most 20.1% compared with the baseline
algorithms.

REFERENCES

[1] B. Di, L. Song, Y. Li, and H. V. Poor, “Ultra-dense leo: Integration of
satellite access networks into 5g and beyond,” IEEE Wireless Communi-
cations, vol. 26, no. 2, pp. 62–69, 2019.

[2] M. Werner, “A dynamic routing concept for atm-based satellite personal
communication networks,” vol. 15, pp. 1636–1648, 1997.

[3] M. Jia, S. Zhu, L. Wang, Q. Guo, H. Wang, and Z. Liu, “Routing algorithm
with virtual topology toward to huge numbers of leo mobile satellite
network based on sdn,” Mobile Networks and Applications, vol. 23, no. 2,
pp. 285–300, 2018.

[4] Q. Chen, J. Guo, L. Yang, X. Liu, and X. Chen, “Topology virtualization
and dynamics shielding method for leo satellite networks,” IEEE Commu-
nications Letters, vol. 24, no. 2, pp. 433–437, 2019.

[5] C. Wang, H. Wang, and W. Wang, “A two-hops state-aware routing
strategy based on deep reinforcement learning for leo satellite networks,”
Electronics, vol. 8, no. 9, p. 920, 2019.

[6] J. Li, H. Lu, K. Xue, and Y. Zhang, “Temporal netgrid model-based dy-
namic routing in large-scale small satellite networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 6, pp. 6009–6021, 2019.

[7] Z. Liu, J. Li, Y. Wang, X. Li, and S. Chen, “Hgl: A hybrid global-local
load balancing routing scheme for the internet of things through satellite
networks,” vol. 13, p. 155014771769258, 2017.

[8] H. Wang, G. Wen, N. Liu, J. Zhang, and Y. Tao, “A load balanced routing
algorithm based on congestion prediction for leo satellite networks,”
Cluster Computing, vol. 22, no. 4, pp. 8025–8033, 2019.

[9] W. Sun, J. Liang, N. Xiao, R. Ding, and Z. Zhang, “Intelligent routing
scheme for sdn satellite network based on neural network,” in IOP
Conference Series: Materials Science and Engineering, vol. 563, no. 5, p.
052087, 2019.

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” vol. 20, pp. 61–80, 2009.

[11] J. Li, H. Lu, K. Xue, and Y. Zhang, “Temporal netgrid model-based
dynamic routing in large-scale small satellite networks,” vol. 68, pp. 6009–
6021, 2019.

[12] B. Y. Chen, X.-W. Chen, H.-P. Chen, and W. H. K. Lam, “Efficient
algorithm for finding k shortest paths based on re-optimization technique,”
vol. 133, p. 101819, 2020.

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” Apr. 2017.

[14] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] P. Almasan et al., “Deep reinforcement learning meets graph neural
networks: exploring a routing optimization use case,” arXiv, pp. arXiv–
1910, 2019.

128

Authorized licensed use limited to: CHONGQING UNIV OF POST AND TELECOM. Downloaded on January 07,2023 at 03:32:59 UTC from IEEE Xplore. Restrictions apply.

